Recurrences

1. The triangular numbers are defined as $t_{n}=1+2+3+\cdots+n=\frac{n(n+1)}{2}$ for $n \geqslant 0$. Define $a_{n}=\sum_{i=0}^{n} t_{i}$ for $n \geqslant 0$. Find a recurrence relation for a_{n}, and solve it. Use the standard procedure for solving linear recurrences. Do not use any summation formula.

Solution The recurrence is $a_{n}-a_{n-1}=t_{n}=\frac{n(n+1)}{2}$ for $n \geqslant 1$ with the initial condition $a_{0}=t_{0}=0$. The characteristic equation is $r-1=0$, that is, $r=1$. The non-homogeneous part is $\frac{n(n+1)}{2} \times 1^{n}$. Therefore the particular solution is $a_{n}^{(p)}=n\left(U n^{2}+V n+W\right)$. Putting this in the recurrence gives

$$
n\left(U n^{2}+V n+W\right)=(n-1)\left(U(n-1)^{2}+V(n-1)+W\right)+\frac{n(n+1)}{2}
$$

Put $n=0$ (or collect the constant terms from both sides) to get $-U+V-W=0$. Put $n=1$ to get $U+V+W=1$. Finally, put $n=-1$ to get $-(U-V+W)=-2(4 U-2 V+W)$, that is, $4 U-2 V+W=0$. The first two equations give $V=U+W=\frac{1}{2}$. The third equation gives $4 U+W=1$, that is, $3 U=\frac{1}{2}$, that is, $U=\frac{1}{6}$, so $W=\frac{1}{2}-\frac{1}{6}=\frac{1}{3}$. This we have obtained

$$
a_{n}^{(p)}=\frac{1}{6} n\left(n^{2}+3 n+2\right)=\frac{1}{6} n(n+1)(n+2) .
$$

It then follows that $a_{n}=A+\frac{1}{6} n(n+1)(n+2)$. Put $n=0$ to get $A=0$, so

$$
a_{n}=\frac{1}{6} n\left(n^{2}+3 n+2\right)=\frac{1}{6} n(n+1)(n+2) \text { for all } n \geqslant 0 .
$$

2. Let $a_{n}, n \geqslant 0$, be the count of strings over $\{0,1,2\}$ containing no consecutive 1 's and no consecutive 2 's. Find a recurrence relation for a_{n}, and solve it.

Solution Let $b_{n}, c_{n}, d_{n}, n \geqslant 1$, denote the counts of the strings of the desired form that start with $0,1,2$, respectively. Let us also take $b_{0}=1, c_{0}=0$ and $d_{0}=0$. We have the following equations involving these.

$$
\begin{aligned}
a_{n} & =b_{n}+c_{n}+d_{n} \text { for all } n \geqslant 0, \\
b_{n} & =a_{n-1} \text { for all } n \geqslant 1, \\
c_{n} & =b_{n-1}+d_{n-1}=a_{n-1}-c_{n-1} \text { for all } n \geqslant 1, \\
d_{n} & =b_{n-1}+c_{n-1}=a_{n-1}-d_{n-1} \text { for all } n \geqslant 1 .
\end{aligned}
$$

Adding the last three equations gives

$$
a_{n}=3 a_{n-1}-\left(c_{n-1}+d_{n-1}\right)=3 a_{n-1}-\left(a_{n-1}-b_{n-1}\right)=2 a_{n-1}+b_{n-1}=2 a_{n-1}+a_{n-2}
$$

for all $n \geqslant 2$. The initial conditions are $a_{0}=1, a_{1}=3$. The characteristic equation of the sequence is $r^{2}-2 r-1=0$. The roots of the characteristic equation are $1+\sqrt{2}, 1-\sqrt{2}$.
So the general solution of this recurrence is of the form

$$
a_{n}=A(1+\sqrt{2})^{n}+B(1-\sqrt{2})^{n}
$$

The initial conditions give

$$
\begin{aligned}
& a_{0}=1=A+B \\
& a_{1}=3=A(1+\sqrt{2})+B(1-\sqrt{2}) .
\end{aligned}
$$

Solving gives $A=\frac{1+\sqrt{2}}{2}$ and $B=\frac{1-\sqrt{2}}{2}$.
Therefore, the final solution is:

$$
a_{n}=\frac{1}{2}\left[(1+\sqrt{2})^{n+1}+(1-\sqrt{2})^{n+1}\right] \text { for all } n \geqslant 0
$$

3. Let $D_{n}, n \geqslant 1$, denote that number of derangements (permutations without fixed points) of $1,2,3, \ldots, n$.
(a) Prove that $D_{n}=(n-1)\left(D_{n-1}+D_{n-2}\right)$ for all $n \geqslant 3$.
(b) Deduce that $D_{n}=n D_{n-1}+(-1)^{n}$ for all $n \geqslant 3$.
(c) Solve for D_{n}.

Solution (a) Let $x_{1}, x_{2}, \ldots, x_{n}$ be a derangement of $1,2, \ldots, n$. Then $x_{n}=i$ for some $i \in\{1,2, \ldots, n-1\}$. Fix an i, and consider the following two cases:
Case 1: $x_{i}=n$. Then, $x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n-1}$ is a derangement of $1,2, \ldots, i-1, i+1, \ldots, n-1$, and the number of such derangements is D_{n-2}.
Case 2: $x_{i} \neq n$. Rename n as i occurring somewhere in the first $n-1$ positions (except the i-th one). But then, $x_{1}, x_{2}, \ldots, x_{n-1}$ is a derangement of $1,2, \ldots, n-1$. The number of such derangements is D_{n-1}.
Now, varying i over all of the $n-1$ allowed values, we get:

$$
D_{n}=(n-1)\left(D_{n-1}+D_{n-2}\right) \text { for all } n \geqslant 3 \quad\left(\text { Note that } D_{1}=0, D_{2}=1\right)
$$

(b) $D_{n}=(n-1)\left(D_{n-1}+D_{n-2}\right) \quad \Rightarrow \quad D_{n}-n D_{n-1}=(-1)\left[D_{n-1}-(n-1) D_{n-2}\right]$

We recursively simplify the right-hand side of the equation above to get:

$$
\begin{aligned}
D_{n}-n D_{n-1} & =(-1)\left[D_{n-1}-(n-1) D_{n-2}\right] \\
& =(-1)^{2}\left[D_{n-2}-(n-2) D_{n-3}\right] \\
& =(-1)^{3}\left[D_{n-3}-(n-3) D_{n-4}\right] \\
& =\cdots=(-1)^{n-2}\left[D_{2}-2 D_{1}\right]
\end{aligned}
$$

Since $D_{1}=0$ and $D_{2}=1$, we get: $D_{n}-n D_{n-1}=(-1)^{n-2} \quad \Rightarrow \quad D_{n}=n D_{n-1}+(-1)^{n}$.
(c) Diving both side of the given recurrence by n !, we get

$$
\frac{D_{n}}{n!}=\frac{D_{n-1}}{(n-1)!}+\frac{(-1)^{n}}{n!}
$$

Unwinding gives

$$
\begin{aligned}
\frac{D_{n}}{n!} & =\frac{D_{n-1}}{(n-1)!}+\frac{(-1)^{n}}{n!} \\
& =\frac{D_{n-2}}{(n-2)!}+\frac{(-1)^{n-1}}{(n-1)!}+\frac{(-1)^{n}}{n!} \\
& =\frac{D_{n-3}}{(n-3)!}+\frac{(-1)^{n-2}}{(n-2)!}+\frac{(-1)^{n-1}}{(n-1)!}+\frac{(-1)^{n}}{n!} \\
& =\cdots=\frac{D_{0}}{0!}+\frac{(-1)^{1}}{1!}+\frac{(-1)^{2}}{2!}+\cdots+\frac{(-1)^{n-1}}{(n-1)!}+\frac{(-1)^{n}}{n!}=\sum_{k=0}^{n} \frac{(-1)^{k}}{k!} \\
\therefore D_{n} & =n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!} .
\end{aligned}
$$

4. Let $a_{n}, n \geqslant 1$, satisfy $a_{1}=1$, and $a_{n}=\left\{\begin{array}{ll}2 a_{n-1} & \text { if } n \text { is odd } \\ 2 a_{n-1}+1 & \text { if } n \text { is even }\end{array}\right.$ for $n \geqslant 2$. Develop a recurrence relation for a_{n}, that holds for both odd and even n, and solve it.

Solution For both cases, $a_{n}-a_{n-2}=2\left(a_{n-1}-a_{n-3}\right) \Rightarrow a_{n}-2 a_{n-1}-a_{n-2}+2 a_{n-3}=0$. Moreover, $a_{2}=3$ and $a_{3}=6$.
The characteristics equation is $r^{3}-2 r^{2}-r+2=0$. Solving this, we get the three roots as $-1,1,2$.
So the general solution is $a_{n}=A(-1)^{n}+B 1^{n}+C 2^{n}$.
The initial conditions give $a_{1}=-A+B+2 C=1, a_{2}=A+B+4 C=3$ and $a_{3}=-A+B+8 C=6$.
Solving these, we get $A=\frac{1}{6}, B=-\frac{1}{2}$, and $C=\frac{5}{6}$.
Therefore $a_{n}=\frac{1}{6}(-1)^{n}-\frac{1}{2} 1^{n}+\frac{5}{6} 2^{n}=\frac{1}{6}\left[5 \times 2^{n}+(-1)^{n}-3\right]$.
5. Solve the following recurrence relation, and deduce the closed-form expression for a_{n}.

$$
a_{n}=a_{n-1}+8 a_{n-2}-12 a_{n-3}+2^{n}(\text { for } n \geqslant 3) \quad \text { with } a_{0}=1, a_{1}=1, a_{2}=\frac{83}{5}
$$

Solution The characteristic equation is $r^{3}-r^{2}-8 r+12=0$, that is, $(r-2)^{2}(r+3)=0$, that is, $r=2$ (double root) and $r=-3$. Therefore, the homogeneous solution is $a_{n}^{(h)}=(A+B n) 2^{n}+C(-3)^{n}$.
Since 2 is a root of the characteristic equation with multiplicity 2 , the particular solution is $a_{n}^{(p)}=D n^{2} 2^{n}$. The recurrence gives

$$
\begin{aligned}
D n^{2} 2^{n} & =D(n-1)^{2} 2^{n-1}+8 D(n-2)^{2} 2^{n-2}-12 D(n-3)^{2} 2^{n-3}+2^{n} \\
\Rightarrow \quad D n^{2} & =\frac{D}{2}(n-1)^{2}+2 D(n-2)^{2}-\frac{3}{2} D(n-3)^{2}+1
\end{aligned}
$$

Comparing the constant terms (coefficients of n^{0}) in above equation, we find

$$
0=\frac{D}{2}+8 D-\frac{27}{2}+1 \quad \Rightarrow \quad D=\frac{1}{5}
$$

So the general form of the solution is

$$
a_{n}=a_{n}^{(h)}+a_{n}^{(p)}=(A+B n) 2^{n}+C(-3)^{n}+\frac{1}{5} n^{2} 2^{n} .
$$

The initial conditions give the equations

$$
\begin{aligned}
a_{0}=1=A+C & \Rightarrow C=1-A, \\
a_{1}=1=2(A+B)-3 C+\frac{2}{5} & \Rightarrow 5 A+2 B=\frac{18}{5}, \\
a_{2}=\frac{83}{5}=4(A+2 B)+9 C+\frac{16}{5} & \Rightarrow-5 A+8 B=\frac{22}{5} .
\end{aligned}
$$

Solving the system gives $A=\frac{2}{5}, B=\frac{4}{5}, C=\frac{3}{5}$. Hence, the final solution is

$$
a_{n}=\left(\frac{2}{5}+\frac{4}{5} n\right) 2^{n}+\frac{3}{5}(-3)^{n}+\frac{1}{5} n^{2} 2^{n}=\frac{1}{5}\left[(1+2 n) 2^{n+1}+(-1)^{n} 3^{n+1}+n^{2} 2^{n}\right]
$$

6. Solve the recurrence relation $a_{n}=n a_{n-1}+n(n-1) a_{n-2}+n$! for $n \geqslant 2$, with $a_{0}=0, a_{1}=1$.

Solution Diving both side of the given recurrence by $n!$, we get,

$$
\frac{a_{n}}{n!}=\frac{a_{n-1}}{(n-1)!}+\frac{a_{n-2}}{(n-2)!}+1
$$

Let, $b_{n}=\frac{a_{n}}{n!}$. So, we have, $b_{n}=b_{n-1}+b_{n-2}+1$ with $b_{0}=0, b_{1}=1$.
Homogeneous Solution: $\quad b_{n}^{(h)}=A_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+A_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n} \quad$ (similar as Fibonacci sequence).
Particular Solution: $\quad b_{n}^{(p)}=U \times 1^{n}=U$.
From the recurrence, we get $U=U+U+1 \Rightarrow U=-1$.
Final Solution (general form): $\quad b_{n}=b_{n}^{(h)}+b_{n}^{(p)}=A_{1}\left(\frac{1+\sqrt{5}}{2}\right)^{n}+A_{2}\left(\frac{1-\sqrt{5}}{2}\right)^{n}-1$.
Using the initial conditions $b_{0}=0, b_{1}=1$, we get $A_{1}=\frac{3+\sqrt{5}}{2 \sqrt{5}}$ and $A_{2}=-\frac{3-\sqrt{5}}{2 \sqrt{5}}$.
Therefore $b_{n}=\left(\frac{3+\sqrt{5}}{2 \sqrt{5}}\right)\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{3-\sqrt{5}}{2 \sqrt{5}}\right)\left(\frac{1-\sqrt{5}}{2}\right)^{n}-1=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+2}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+2}\right]-1$, so

$$
a_{n}=n!b_{n}=\frac{n!}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+2}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+2}-\sqrt{5}\right] \quad \text { for } n \geqslant 0
$$

7. Solve the recurrence relation: $a_{0}=1, a_{1}=2$, and $a_{n}=\frac{2 a_{n-1}^{3}}{a_{n-2}^{2}}$ for $n \geqslant 2$.

Solution Taking \log (base 2) of the given recurrence, we get

$$
\log a_{n}=\log 2+3 \log a_{n-1}-2 \log a_{n-2}
$$

Let $b_{n}=\log a_{n}$. So we have $b_{n}=3 b_{n-1}-2 b_{n-2}+1$ with $b_{0}=0, b_{1}=1$.
Homogeneous Solution: The characteristics equation is $r^{2}-3 r+2=0$. Since the roots of this equation are 1 and 2, we can write $b_{n}^{(h)}=A_{1} \times 1^{n}+A_{2} \times 2^{n}=A_{1}+A_{2} 2^{n}$.
Particular Solution: $\quad b_{n}^{(p)}=n U 1^{n}=U n$.
From the recurrence, we get $U n=3 U(n-1)-2 U(n-2)+1 \Rightarrow U=-1$.
Final Solution (general form): $b_{n}=b_{n}^{(h)}+b_{n}^{(p)}=A_{1}+A_{2} 2^{n}-n$. Using the initial conditions, we get $b_{0}=0, b_{1}=1$. These give $A_{1}=-2$ and $A_{2}=2$. Therefore $b_{n}=-2+2 \times 2^{n}-n=2^{n+1}-n-2$, that is,

$$
a_{n}=2^{b_{n}}=2^{2^{n+1}-n-2} \quad \text { for } n \geqslant 0
$$

8. How many lines are printed by the call $f(n)$ for an integer $n \geqslant 0$?
```
void f ( int n )
{
    int m;
    printf("Hi\n");
    m = n - 1;
    while (m >= 0) { f(m); m -= 2; }
}
```

Solution Suppose that L_{n} be the number of lines printed by the call $f(n)$. We have $L_{0}=1, L_{1}=2$, and

$$
L_{n}=\left\{\begin{array}{cl}
1+\sum_{k=0}^{(n-1) / 2} L_{2 k}, & \text { if } n \text { is odd } \\
1+\sum_{k=0}^{(n-2) / 2} L_{2 k+1}, & \text { if } n \text { is even }
\end{array} \text { for } n \geqslant 2\right.
$$

In both the cases, we derive $L_{n}-L_{n-2}=L_{n-1}$. This is the same recurrence as satisfied by the Fibonacci numbers. Moreover, $L_{0}=1=F_{2}$ and $L_{2}=2=F_{3}$. It therefore follows that $L_{n}=F_{n+2}$ for all $n \geqslant 0$, that is,

$$
L_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+2}+\left(\frac{1-\sqrt{5}}{2}\right)^{n+2}\right]
$$

9. Consider a non-homogeneous recurrence of the form

$$
a_{n}=c_{k-1} a_{n-1}+c_{k-2} a_{n-2}+\cdots+c_{0} a_{n-k}+p_{1}(n) s_{1}^{n}+p_{2}(n) s_{2}^{n}
$$

Here, $c_{k-1}, c_{k-2}, \ldots, c_{0}$ are constants (with $c_{0} \neq 0$), $p_{1}(n)$ and $p_{2}(n)$ are non-zero polynomials in n, and s_{1}, s_{2} are distinct non-zero constants. Propose a method to solve this recurrence.

Solution Consider two new sequences u_{n} and v_{n} satisfying the recurrences

$$
u_{n}=c_{k-1} u_{n-1}+c_{k-2} u_{n-2}+\cdots+c_{0} u_{n-k}+p_{1}(n) s_{1}^{n}
$$

and

$$
v_{n}=c_{k-1} v_{n-1}+c_{k-2} v_{n-2}+\cdots+c_{0} v_{n-k}+p_{2}(n) s_{2}^{n} .
$$

These recurrences can be solved because the non-homogeneous part in each is in the standard form. Adding the two recurrences gives

$$
u_{n}+v_{n}=c_{k-1}\left(u_{n-1}+v_{n-1}\right)+c_{k-2}\left(u_{n-2}+v_{n-2}\right)+\cdots+c_{0}\left(u_{n-k}+v_{n-k}\right)+p_{1}(n) s_{1}^{n}+p_{2}(n) s_{2}^{n}
$$

Therefore $a_{n}=u_{n}+v_{n}$ is the solution of the given recurrence.
What about the initial conditions? Suppose that the values of $a_{0}, a_{1}, a_{2}, \ldots, a_{k-1}$ are supplied. We need to choose $u_{0}, u_{1}, u_{2}, \ldots, u_{k-1}$ and $v_{0}, v_{1}, v_{2}, \ldots, v_{k-1}$ so that $a_{n}=u_{n}+v_{n}$ for $n=0,1,2, \ldots, k-1$ as well. To ensure that, we can choose the initial conditions for the u and v sequences in any manner we like. For example, we can take $u_{n}=a_{n}$ and $v_{n}=0$ for $n=0,1,2, \ldots, k-1$.

Additional Exercises

10. Consider a linear recurrence relation with constant coefficients having characteristic equation $(x-r)^{\mu}$ for some $\mu \in \mathbb{N}$, and with a non-homogeneous part $f(n)=n^{t} r^{n}$. Using the theory of generating functions, prove that the particular solution for this recurrence relation is of the form

$$
n^{\mu}\left(u_{t} n^{t}+u_{t-1} n^{t-1}+\cdot+u_{2} t^{2}+u_{1} t+u_{0}\right) r^{n} .
$$

11. Foosia and Barland play a long series of ODI matches. In the first game, Foosia bats first. After that, the team that wins a match must bat first in the next match. For each team, the probability of win is p if it bats first. Assume that $0<p<1$. Find the probability p_{n} that Foosia wins the n-th match. What is $\lim _{n \rightarrow \infty} p_{n}$?
12. Pell numbers are defined as $P_{0}=0, P_{1}=2, P_{n}=2 P_{n-1}+P_{n-2}$ for $n \geqslant 2$.
(a) Deduce a closed-form formula for P_{n}.
(b) Prove that $\left(\begin{array}{cc}P_{n+1} & P_{n} \\ P_{n} & P_{n-1}\end{array}\right)=\left(\begin{array}{ll}2 & 1 \\ 1 & 0\end{array}\right)^{n}$ for all $n \geqslant 1$.
(c) Prove that $\lim _{n \rightarrow \infty} \frac{P_{n-1}+P_{n}}{P_{n}}=\sqrt{2}$.
(d) Prove that if P_{n} is prime, then n is also prime.
13. The Pell-Lucas numbers are defined as $Q_{0}=Q_{1}=2, Q_{n}=2 Q_{n-1}+Q_{n-2}$ for $n \geqslant 2$.
(a) Deduce a closed-form formula for Q_{n}.
(b) Prove that $Q_{n}=P_{2 n} / P_{n}$ for all $n \geqslant 1$.
14. Let $a_{0}=1$, and $a_{n}=\frac{5}{2} a_{n-1}-a_{n-2}$ for all $n \geqslant 2$. Find a_{1} such that the sequence a_{n} converges.
15. A set of natural numbers is called selfish if it contains its size as a member. Let s_{n} denote the number of selfish subsets of $\{1,2,3, \ldots, n\}$ for $n \geqslant 1$. Develop a recurrence relation for s_{n}, and solve it.
16. Let us call a selfish set A minimal if no proper subset of A is selfish. Let S_{n} denote the number of minimal selfish subsets of $\{1,2,3, \ldots, n\}$. Develop a recurrence relation for S_{n}, and solve it.
17. Let $a_{n}, n \geqslant 0$, denote the number of binary strings of length n, not containing the pattern 101 . Develop a recurrence relation for a_{n}, and solve it.
18. Solve the recurrence relation: $a_{0}=1, a_{1}=2, a_{n}=a_{n-1}+2 a_{n-2}+n^{2}+2^{n}$ for $n \geqslant 2$.
19. Solve the recurrence relation: $a_{0}=1, a_{1}=2, a_{n}=4 a_{n-2}+2^{n}+n 3^{n}$ for $n \geqslant 2$.
20. Solve the recurrence relation: $a_{0}=0, a_{1}=1, a_{2}=2, a_{n}=a_{n-1}+a_{n-2}-a_{n-3}+n^{2}+n+(-1)^{n}$ for $n \geqslant 3$.
21. Solve the recurrence relation $n a_{n}=(n+1) a_{n-1}+2 n$ for $n \geqslant 1$, with the initial condition $a_{0}=0$.
22. Solve the recurrence relation $a_{0}=\frac{2}{3}$, and $a_{n}=2 a_{n-1}^{2}-1$ for $n \geqslant 1$.
23. A sequence a_{n} is defined recursively as $a_{1}=1, a_{2}=2, a_{3}=24$, and $a_{n}=\frac{6 a_{n-1}^{2} a_{n-3}-8 a_{n-1} a_{n-2}^{2}}{a_{n-2} a_{n-3}}$ for $n \geqslant 4$. Prove that a_{n} is an integer for all $n \in \mathbb{N}$.
24. Consider the recurrence relation $a_{n}=a_{n-1}+3 a_{n-2}-a_{n-3}$ for $n \geqslant 3$. Find a matrix A such that $\left(\begin{array}{l}a_{3} \\ a_{4} \\ a_{5}\end{array}\right)=$ $A\left(\begin{array}{l}a_{0} \\ a_{1} \\ a_{2}\end{array}\right)$. Express $\left(\begin{array}{c}a_{3 n} \\ a_{3 n+1} \\ a_{3 n+2}\end{array}\right)$ in terms of A and a_{0}, a_{1}, a_{2}, for all $n \in \mathbb{N}_{0}$.
25. So far, we have solved recurrence relations. In this exercise, we reverse this process, that is, from a sequence, we generate a recurrence relation, of which the given sequence is a solution. We concentrate only on linear recurrence relations with constant coefficients (homogeneous/non-homogeneous). Solve the following parts for the given sequences with the orders of the recurrence relations as specified.
(a) $(2+\sqrt{3})^{n}+(2-\sqrt{3})^{n}$, order two.
(b) $2^{n}+3^{n}$, order two.
(c) $2^{n}+3^{n}$, order one.
(d) $2^{n}+n 3^{n}$, order two.
(e) $2^{n}+n 3^{n}$, order one.
(f) $2^{n}+n 3^{n}+n^{2} 4^{n}$, order three.
(g) $2^{n}+n 3^{n}+n^{2} 4^{n}$, order two.
(h) $2^{n}+n 3^{n}+n^{2} 4^{n}$, order one.
26. Let $A(x)=1+\frac{1}{\sqrt{1-2 x}}$ be the generating function of a sequence $a_{n}, n \geqslant 0$. Develop a recurrence relation for the sequence.
27. Let a_{n} denote the number of strings w of length n over the alphabet $\{A, C, G, T\}$ such that the number of T in w is a multiple of 3 . Find a closed-form expression for a_{n}.
28. How many lines are printed by the call $g(n, 0,0)$ for an integer $n \geqslant 0$?
```
void g ( int n, int i, int flag )
{
    if (i == n) { printf("Hola\n"); return; }
    g(n, i+1, flag); g(n, i+1, flag); g(n, i+1, flag);
    if (flag == 0) g(n, i+1, 1);
}
```

29. (a) How many strings of length n over the alphabet $\{A, C, G, T\}$ are there, in which T never appears after A ? Notice that there is no restriction on the appearances of T before the first occurrence of A.
(b) Modify the function $g()$ of the last exercise so as to print precisely the strings of Part (a).
30. How many strings of length n over the alphabet $\{A, C, G, T\}$ are there, in which the pattern $T T$ (two consecutive T 's) never appears after A ? Note that $T T$ may appear before the first occurrence of A, and that single isolated T 's may appear after A.
