CS21201 Discrete Structures Tutorial 7

Sizes of Sets

- **1.** Let *A* be an infinite set.
 - (a) Prove that there exists a map $A \rightarrow A$ which is injective but not surjective.

Solution Pick any countable subset $B = \{b_1, b_2, b_3, \ldots\}$ of A. Define the map $f: A \to A$ as

$$f(a) = \begin{cases} b_{n+1} & \text{if } a = b_n, \\ a & \text{otherwise.} \end{cases}$$

(b) Prove that there exists a map $A \rightarrow A$ which is surjective but not injective.

Solution Let B be as in Part (a). Take the map $g: A \rightarrow A$ as

$$g(a) = \begin{cases} b_1 & \text{if } a = b_1, \\ b_{n-1} & \text{if } a = b_n \text{ for } n \geqslant 2, \\ a & \text{otherwise.} \end{cases}$$

2. Let A and B be uncountable sets with $A \subseteq B$. Prove or disprove: A and B are equinumerous.

Solution False. For example, take $B = 2^{\mathbb{R}}$, and $A = \{\{x\} \mid x \in \mathbb{R}\}$. By the power-set theorem, $|B| > |\mathbb{R}|$. Moreover, A is equinumerous with the uncountable set \mathbb{R} via the bijective correspondence $\mathbb{R} \to A$ taking $x \mapsto \{x\}$.

3. Let *A* be an uncountable set and *B* a countably infinite subset of *A*. Prove/Disprove: *A* is equinumerous with A - B.

Solution True. Since $A - B \subseteq A$, we have $|A - B| \le |A|$. We need to show that $|A| \le |A - B|$, that is, there is an injective map $f: A \to A - B$. Since B is countable, we can write $B = \{b_1, b_2, b_3, \ldots\}$. If A - B is finite (and so countable), then $A = (A - B) \cup B$ is countable too, so A - B is infinite. This implies that we can find a countably infinite subset $C = \{c_1, c_2, c_3, \ldots\}$ of A - B. Now, define the map $f: A \to A - B$ as

$$f(a) = \begin{cases} c_{2n-1} & \text{if } a = c_n, \\ c_{2n} & \text{if } a = b_n, \\ a & \text{otherwise.} \end{cases}$$

It is an easy matter to show that f is a bijection (so an injection too).

4. Prove that the real interval [0,1) is equinumerous with the unit square $[0,1) \times [0,1)$.

Solution The sets $\mathbb{F} = \mathbb{Q} \cap [0,1)$ and \mathbb{F}^2 are countable. Therefore $A = [0,1) - \mathbb{F}$ and $B = [0,1)^2 - \mathbb{F}^2$ are equinumerous with [0,1) and $[0,1)^2$, respectively. Now, define that map $f: B \to A$ taking $(0.a_1a_2a_3...,0.b_1b_2b_3...) \mapsto 0.a_1b_1a_2b_2a_3b_3...$ Clearly, f is injective. Thus, $|B| \leq |A|$. The other inequality $|A| \leq |B|$ is simpler (map $0.c_1c_2c_3...$ to $(0.c_1c_2c_3...,0.c_1c_2c_3...)$).

- **5.** Define a relation \sim on \mathbb{R} as $a \sim b$ if and only if $a b \in \mathbb{Q}$.
 - (a) Prove that \sim is an equivalence relation.

Solution Routine job.

(b) Is the set \mathbb{R}/\sim of all equivalence classes of \sim countable?

Solution No. \mathbb{R} is the union of all equivalence classes of \sim . Each equivalence class [x] is in bijective correspondence with \mathbb{Q} via the map $r \mapsto x + r$, and so is countable. A countable union of countable sets is again countable.

6. Let $\mathbb{Z}[x]$ denote the set of all univariate polynomials with integer coefficients. Prove that $\mathbb{Z}[x]$ is countable.

Solution $\mathbb{Z}[x]$ is the countable union of $\{0\}$ and $\mathbb{Z}_d[x]$ for $d \in \mathbb{N}_0$, where $\mathbb{Z}_d[x]$ is the set of all univariate polynomials with integer coefficients and degree exactly equal to d. Such a polynomial can be written as $a_d x^d + a_{d-1} x^{d-1} + \cdots + a_2 x^2 + a_1 x + a_0$ with $a_i \in \mathbb{Z}$ and $a_d \neq 0$. Since each a_i has countably many possibilities, and there are only finitely many (d+1) to be precise coefficients, each $\mathbb{Z}_d[x]$ is countable.

7. (a) A real or complex number a is called *algebraic* if f(a) = 0 for some non-zero $f(x) \in \mathbb{Z}[x]$. Let \mathbb{A} denote the set of all algebraic numbers. Prove that \mathbb{A} is countable.

Solution There are countably many polynomials in $\mathbb{Z}[x] - \{0\}$. Each such polynomial has only finitely many roots.

(b) Prove that there are uncountably many transcendental numbers.

Solution \mathbb{R} is the disjoint union of $\mathbb{R} \cap \mathbb{A}$ and the set \mathbb{T} of all (real) transcendental numbers. Since \mathbb{A} is countable, so too is $\mathbb{R} \cap \mathbb{A}$. If \mathbb{T} is countable, then \mathbb{R} is countable too.

- **8.** Let $\mathbb{Z}[x,y]$ be the set of all bivariate polynomials with integer coefficients.
 - (a) Prove that $\mathbb{Z}[x,y]$ is countable.

Solution Similar to the proof for $\mathbb{Z}[x]$.

(b) Let $\mathbb{V} = \{(a,b) \in \mathbb{C} \times \mathbb{C} \mid f(a,b) = 0 \text{ for some nonzero } f(x,y) \in \mathbb{Z}[x,y] \}$. Is \mathbb{V} countable?

Solution No. The non-zero polynomial $x - y \in \mathbb{Z}[x, y]$ has a *root* (a, a) for all $a \in \mathbb{C}$. That is, $\mathbb{C} \times \mathbb{C} \subseteq \mathbb{V}$.

- **9.** A set $S \subseteq \mathbb{R}$ is called *bounded* if *S* has both a lower bound and an upper bound in \mathbb{R} . Countable/Uncountable?
 - (a) The set of all bounded subsets of \mathbb{Z} .

Solution Countable. Let S be a bounded subset of \mathbb{Z} , Let $l \in \mathbb{R}$ be a lower bound of S, and $b \in \mathbb{R}$ an upper bound of S. But then S is a subset of the finite set $[\lceil l \rceil, \lfloor u \rfloor]$, and is itself finite. Now, use the facts that the two integer bounds can be chosen in only countably many ways, and the power set of a finite set is finite (and so countable).

(b) The set of all bounded subsets of \mathbb{Q} .

Solution Uncountable. Let \mathbb{B} denote the set of all bounded subsets of \mathbb{Q} . Define a map $f: \mathbb{R} \to \mathbb{B}$ as follows. If x is rational, take $f(x) = \{x\}$. If x is irrational, let $a = \lfloor x \rfloor$. Then, x - a is a proper fraction (in the interval [0,1)), and has an infinite decimal expansion of the form $0.d_1d_2d_3...$ Define $f(x) = \{a, a + 0.d_1, a + 0.d_1d_2, a + 0.d_1d_2d_3...\}$, so f(x) is bounded by a and x. It is an easy matter to argue that f is injective.

10. Provide a diagonalization argument to prove that the set of all infinite bit sequences is uncountable.

Solution Let S denote the set of all infinite bit sequences. Suppose that S is countable. Then, there exists a bijection $f: \mathbb{N} \to S$. We write $f(1), f(2), f(3), \ldots$ as follows.

```
f(1) = a_{11}, a_{12}, a_{13}, \dots, a_{1n}, \dots
f(2) = a_{21}, a_{22}, a_{23}, \dots, a_{2n}, \dots
f(3) = a_{31}, a_{32}, a_{33}, \dots, a_{3n}, \dots
\vdots
f(n) = a_{n1}, a_{n2}, a_{n3}, \dots, a_{nn}, \dots
\vdots
```

Consider the sequence $s = a'_{11}, a'_{22}, a'_{33}, \dots, a'_{nn}, \dots$, where ' denotes bit complement. Then, $s \neq f(n)$ for all $n \in \mathbb{N}$. So f is not surjective, a contradiction.

- 11. Countable/Uncountable? Justify.
 - (a) The set F of all infinite bit sequences containing only a finite number of 0's.

Solution Countable. Let F_k denote the set of all infinite bit sequences containing exactly k 0's, where k is a fixed element of \mathbb{N}_0 . We prove by induction on k that each F_k is countable.

[Basis] F_0 contains only one string (111...), and so is countable.

[Induction] Suppose that F_k is countable. Every element in F_{k+1} is of the form $1^u 0\alpha$, where $u \in \mathbb{N}_0$, and $\alpha \in F_k$. That is, F_{k+1} is in bijection with $N_0 \times F_k$. But \mathbb{N}_0 is countable, and so also is F_k by the induction hypothesis. Therefore F_{k+1} is countable too.

Finally, note that $F = \bigcup_{k \ge 0} F_k$ is a union of countably many countable sets.

(b) The set *I* of all infinite bit sequences containing an infinite number of 0's.

Solution Uncountable. The set S of all infinite bit sequences is uncountable. If I is countable, $S = F \cup I$ would also be countable.

Direct proof: Define the injective map $S \to I$ as $a_1, a_2, a_3, \ldots \mapsto 0, a_1, 0, a_2, 0, a_3, 0, \ldots$

- **12.** Let M_0 be the set of all infinite bit sequences a_1, a_2, a_3, \ldots such that for all $n \in \mathbb{N}$, the string $a_1 a_2 \ldots a_n$ contains more 0's than 1's. Define M_1 analogously (more 1's than 0's). Let N denote the set of all infinite bit sequences that are in neither M_0 nor M_1 .
 - (a) Prove that M_0 is equinumerous with M_1 .

Solution Consider the bijection $M_0 \to M_1$ taking a_1, a_2, a_3, \dots to a'_1, a'_2, a'_3, \dots , where a'_n is the complement of the bit a_n .

(b) Prove that *N* is uncountable.

Solution Let S denote the set of all infinite bit sequences. S is uncountable. Consider the injective map $S \to N$ taking a_1, a_2, a_3, \dots to $0, 1, a_1, a_2, a_3, \dots$

(c) Prove/Disprove: M_0 and M_1 are uncountable.

Solution Uncountable. For example, consider the injective map $S \to M_0$ that takes the infinite sequence $a_1, a_2, a_3, a_4, \dots$ to $0, 0, a_1, 0, a_2, 0, a_3, 0, a_4, \dots$

Additional Exercises

- **13.** Let *A*, *B* be sets. Prove or disprove:
 - (a) If A is countable and $A \subseteq B$, then B is countable.
 - **(b)** If *A* is uncountable and $A \subseteq B$, then *B* is uncountable.
 - (c) If A and B are countable, then $A \cap B$ is countable.
 - (d) If *A* and *B* are uncountable, then $A \cap B$ is uncountable.
- **14.** (a) Prove that the set of all finite subsets of \mathbb{N} is countable.
 - **(b)** Conclude that the set of all infinite subsets of \mathbb{N} is uncountable.
- **15.** Let *A* be a finite set.
 - (a) Prove that the set of all functions $A \to \mathbb{N}$ is countable.
 - **(b)** Let $|A| \ge 2$. Prove that the set of all functions $\mathbb{N} \to A$ is uncountable.
 - (c) Let $|A| \ge 2$. Prove that the set of all functions $\mathbb{N} \to A$ is equinumerous with \mathbb{R} .
- **16.** Provide explicit bijections between the following pairs of sets.
 - (a) The sets \mathbb{N} and $\mathbb{N} \times \mathbb{N}$.
 - **(b)** The set of rational numbers in the real interval [0,1) and the set \mathbb{Q} of all rational numbers.
 - (c) The set of irrational numbers in the real interval [0,1) and the set of all irrational numbers.
 - (d) The real interval [0,1) and \mathbb{R} .
 - (e) The real interval (0,1) and \mathbb{R} .
 - (f) The real intervals [0,1) and [a,b) for any $a,b \in \mathbb{R}$, a < b.
 - (g) The real intervals [0,1) and (0,1).
 - (h) The real intervals [0,1] and (0,1).
- 17. Let A, B be sets, where A is equinumerous with \mathbb{R} and B is equinumerous with \mathbb{N} .
 - (a) Prove that $A \cup B$ is equinumerous with \mathbb{R} .
 - (b) Prove that the Cartesian product $A \times B$ is equinumerous with \mathbb{R} .
- **18.** Prove that the set $\{a+ib \mid a,b \in \mathbb{Z}\}$ of Gaussian integers is countable.
- 19. (a) Prove that the set $\mathbb{Q}[[X]]$ of all power series with rational coefficients is uncountable.
 - (b) Prove that the set $\mathbb{Q}(X) = \{f(X)/g(X) \mid g(X) \neq 0\}$ of all rational functions with rational coefficients is countable.
 - (c) Conclude that $\mathbb{Q}[[X]]$ contains a power series which is not the power series expansion of any rational function in $\mathbb{Q}(X)$. Can you identify any such power series explicitly?
- **20.** Prove that the union of two sets each equinumerous with \mathbb{R} is again equinumerous with \mathbb{R}

- **21.** Prove that the set of all permutations of \mathbb{N} is not countable.
- **22.** Let *A* be a set of size ≥ 2 (*A* may be infinite). Modify the diagonalization proof to establish that there cannot exist a bijection between *A* and the set of all *non-empty* subsets of *A*.
- **23.** Let $S = (s_1, s_2, s_3, ...)$ and $T = (t_1, t_2, t_3, ...)$ be two infinite bit sequences. We say that S and T have the *same tail* if there exists $N \in \mathbb{N}$ such that $s_n = t_n$ for all $n \ge N$. Prove that for any given sequence S, the set of sequences having the same tail as S is countable.
- **24.** Let *S* be the set of all infinite bit sequences. The *n*-th element of a sequence $\alpha \in S$ is denoted by $\alpha(n)$ for $n \ge 0$. Prove the countability/uncountability of each of the following two subsets of *S*.
 - (a) $T_1 = \left\{ \alpha \in S \mid \alpha(n) = 1 \text{ and } \alpha(n+1) = 0 \text{ for some } n \geqslant 0 \right\}.$
 - **(b)** $T_2 = \left\{ \alpha \in S \mid \alpha(n) = 1 \text{ and } \alpha(n+1) = 0 \text{ for no } n \geqslant 0 \right\}.$
- **25.** Let *S* be the set of all infinite bit sequences. Denote by *A* the set of all infinite bit sequences that contain two consecutive 0's (at least once). Also let *B* denote the set of all infinite bit sequences that do not contain consecutive 0's.
 - (a) Propose an injective map $S \rightarrow A$, and argue about the countability/uncountability of A.
 - **(b)** Prove whether *B* is countable or not.
- ** **26.** [Cantor set] Start with the real interval I = [0,1]. Remove the open middle one-third $(\frac{1}{3},\frac{2}{3})$ from [0,1]. This leaves us with two closed intervals $[0,\frac{1}{3}]$ and $[\frac{2}{3},1]$. Remove the open middle one-thirds of these two intervals, that is, $(\frac{1}{9},\frac{2}{9})$ and $(\frac{7}{9},\frac{8}{9})$. The portion of I that remains now consists of the four closed intervals $[0,\frac{1}{9}]$, $[\frac{2}{9},\frac{1}{3}]$, $[\frac{2}{3},\frac{7}{9}]$, and $[\frac{8}{9},1]$. Again, remove the open middle one-thirds of these four intervals, leaving eight closed subintervals in I. Repeat this process infinitely often. Let C be the subset of I that remains after this infinite process. Prove that C is uncountable.

Note: The cantor set *C* is one of the first explicitly constructed examples of *fractal sets*.

** 27. Repeat Cantor's process of the last exercise with the exception that you remove the closed middle one-thirds of the remaining intervals. That is, in the first step, you remove $\left[\frac{1}{3}, \frac{2}{3}\right]$, in the second step, you remove $\left[\frac{1}{9}, \frac{2}{9}\right]$ and $\left[\frac{7}{9}, \frac{8}{9}\right]$, and so on. Now, let *D* be the subset of I = [0, 1], that remains after this infinite process. Evidently, *D* is a proper subset of *C*. Is *D* uncountable too?