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Chapter 4 : Sizesof sets

In this chapter, we deal with the concept of how large a sefTise biggest implication of this study in
Computer Science is the fact that computers cannot solyaahlems. This is one the most fundamental
realizations underlying the theory of computation.

4.1 Thenotion of size

Thesizeor cardinality of a set is the number of elements in it. The size of ase&t denoted by A|. The
notation|A| < oo implies thatA is a finite set. A finite set with elements can be listed §8;, as, ..., an},
whereq; is thei-th element ofd fori = 1,2,... n.

The simplest example of an infinite set is the Bet= {1,2,3,...} of natural numbers. Consider the set
N, ={1,2,...,n}. Foreveryn € N the sefN, is finite. However, their uniotN = |J,,cy N,, is not a finite
set. Nonetheless, we can count the elements ad1,2,3,...,n,.... This counting never stops, but every
n € N, however large, is eventually covered in the counting psece

Two sets are calledquinumerousf they have the same size. For finite sets, this concepsigteavisualize.

We run into trouble when we work with infinite sets. Clearly imfinite set can be equinumerous with a
finite set. What is more important is that two infinite setschaet be equinumerous. We will soon see that
the setZ of all integers (positive, negative and zero) and the(@eif rational numbers are equinumerous
with N. That is surprising, sincB is a strict subset d¥. and can be easily visualized to be embedded inside
Q (identify the natural numbet with the rational numben/1). SinceZ is equinumerous witfN, we can
also count or enumerate the elementZp$o that for every: € N we can identify an integer,, as then-th
integer. For example, we may order the element€ @s0,1,—-1,2,—-2,3,-3,...,n,—n,.... ThusO is
thefirstinteger in the counting proceskis thesecondnteger,—1 thethird integer,2 thefourthinteger, and

so on. ltis clear that evemy. € Z, positive, negative, or zero, is eventually covered in thenting process.

The sefR of all real numbers is not equinumerous wi¥h In fact,R contains more elements th&h(or Z or

Q). This implies that if we start counting real numbers as aband allow the counting process to continue
ad inifinitum we cannot exhaust the list of all real numbers. In other wovechatever way we count real
numbers, we are sure to miss out some real number(s) in thinguprocess.

It is now time to make the concept of size mathematically ostec We use the theory of functions to that
effect. Since we will be dealing mostly with infinite setsjstimperative that the reader is already quite
comfortable with the concept of injective, surjective atijddiive functions among infinite sets.

4.2 Comparing the sizes of two sets

Let A, B be two sets. We say that
Al < |B|

if there exists an injective map: A — B. This notion is intuitively clear, since for every element A we
can associate an elemént f(a) of B in such a fashion that two different elements/bére not associated
with the same element @8. The mapf essentially produces an embeddingdin B. So B cannot be of
size smaller than the size df.

4.1 Example (1) Let A C B. The canonical inclusion map: A — B takinga — a is an injection, and
so|A| < |B|. For exampleN C Z and so|N| < |Z|. Also letZyqq (resp.Zeven) denote the set of all odd
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(resp. even) integers. We ha\&,qq4| < |Z| and|Zeyen| < |Z|. Similarly,
for natural numbers.

Nodd’ g ‘N’ and‘Neven’ < ‘N’

(2) The canonical inclusion map — Q that takes: — a/1 is an injection, and s{Z| < |Q|. Also Z is
canonically embedded iR and soZ| < |R|. Likewise,|Q| < |R|.

(3) What is initially confusing about infinite sets is thaeewwhenA C B, there may exist an injective
map B — A implying that|B| < |A|. As an example, consider the injectigh: Z — N defined as
f0) =1,f(1) = 2,f(-1) = 3,f(2) = 4,f(—-2) =5,...,f(n) = 2n,f(—m) = 2n + 1,.... This
implies|Z| < |N].

Two setsA, B are calledequinumerousdenoted A| = |B|, if

|Al < |B| and [B] < |4],

or equivalently if there exist an injective mgp. A — B and an injective map : B — A.

For example, we have proved thal < |Z| and|Z| < |N]. It follows that:
|Z] = INJ,

i.e.,Z is of the same size a&8. The inclusion function : N — Z is injective but not surjective, whereas the
function of Part (3) of Example 4.1 is a bijection. We may iedgpropose an injective but non-surjective
functiong : Z — Nasg(0) = 1,9(1) = 2,9(—1) =4,9(2) =5,9(-2) =7,...,9(n) =3n—1,9(—n) =
3n+1,..., the image of which does not include the positive multiple8.o

It is natural to expect two setd, B to be equinumerous if there exists a bijectibn A — B between
them. Clearly, the existence of such a function impligs < |B| (h is injective) and B| < |A| (bt is
injective). The converse of this is not immediately clear,,ithe existence of injective functioris A — B
andg : B — A does not immediately imply the existence of a bijecttonA — B. This is, however, true,
as is proved now.

4.2 Theorem [Cantor-Schbder-Bernstein theoremTwo setsA, B are equinumerous if and only if there
exists a bijectiorh : A — B between them.

Proof [If] Obvious.

[Onlyif]Let f : A — B andg : B — A be injections. We need to construct a bijection A — B. To
that effect we construct a subsebf A and defineh as

[ f(x) if z €S,
hw) = {g_l(x) if v ¢ S.

The construction of the subsstis quite tricky. Ifg is surjectiveg~! is already a bijectioml — B, and we
takeS = (). So we assume thatis not surjective.

The functiong, surjective or not, yields a bijectiop™ : g(B) — B. The elements ofd \ g(B) lie
outside the domain of~!. Soh needs to us¢ in order to map elements of \ g(B) and we start with

So = A\ g(B).
Now suppose that there is an element S, for which f(z) = g~!(y) for some elemeny € ¢(B) (i.e.,
y ¢ Sp). We have already definddxz) = f(z) sincexz € Sy. Sinceh is going to be injective, we cannot

defineh(y) = g~ *(y), i.e., we must defing(y) = f(y). Notice thaty = g(g7(v)) = g(f(x)) = (gof)(x)
with z € Sy. It follows thath needs to us¢ for mapping elements &f; = (g o f)(So).
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Now takexr € S;. There existg) € A, y ¢ So U Sy, such thatf(z) = ¢g~!(y). Since we have already
takenh(z) = f(z), we must definéi(y) = f(y), i.e., we must us¢ in order to defineh on elements of

Sy = (g o f)(S).
Proceeding in this way we defirtg, inductively as:

So = A\g(B)= (g0 f)(A\g(B)),
Sk = (g0 f)(Sk—1) = (g0 f)F(A\ g(B)) fork > 1.

Finally, we take:

S=USk=UlgoHrA\g(B)).

k>0 k>0

I now formally establish that this construction works, ifedefined as above with respect to thiss indeed
a bijection. First notice that O Sy = A\ g(B), so thatd \ S C ¢(B), that is,h(z) is defined for every
x ¢ S. Itis also defined for every € S, i.e., h is well-defined.

Claim: h is injective.

Suppose thak(z) = h(y) for somez,y € A. If bothz,y € S, thenx = y by the injectivity of f. If both

z,y € A\ S, then the injectivity of;~! impliesz = y. So assume that one ofy is in S, the other in4\ S.

Suppose: € S andy ¢ S. By definition of S we haver € Sy for somek > 0. Also sincey ¢ S, we have

y € g(B). Thereforey = g(g~"(y)) = g(h(y)) = g(h(z)) = g(f(2)) = (g0 f)(z), i.e.,y € Sy, i€,
y € S, a contradiction. So it is not possible to have S andy ¢ S.

Claim: h is surjective.

Take an arbitraryy € B. We need to produce an € A for which h(a) = b. Considerz = g(b) € A.
If = ¢ S, thenh(z) = g1 (z) = g '(g(b)) = b, i.e., we takea = x. So suppose that € S. By
construction ofS, we havex € Sy for somek > 0, i.e.,z = (g o f)*(y) for somey € Sy. Since
x = g(b) € g(B), we cannot havé = 0, i.e.,k > 1. Takea = (go f)¥"!(y) € Sx_; C S. But then
h(a) = f(a) = g7 (g(f(a)) = g7 (g0 (g0 W) =97 (g0 )F(y) = 97" (z) =b. <

4.3 Example As an illustration of the Cantor-Schroder-Bernstein tieao, takeA = N and B = Ngyen
(the set of even natural numbers). Also tgke A — B asf(a) = 4a andg : B — A asg(b) = b. Both f
andg are injective, but neither of them is bijective. We hayé3) = {2,4,6,8,10,...,2n,...}, and so

So = {1,3,5,7,....2n—1,...} ={2n — 1 | n € N},
S = {22(2n—1)|n €N},
Sy = {2%2n—1)|n €N},
Sy = {2%*(@2n—1)|n e N}.

Therefore,S comprises positive integers in which the multiplicities2oére even. The values éf(a) are
listed below for some small values of

a |12 34|56 7|8]9(10]11]12|13|14|15|16|17]|18
h(a) 412121620 |6 |28 |8 |36| 10|44 |48 |52| 14|60 |64 |68 |18

This bijection is different from the standard bijectiBh— Ngye, that maps: — 2n.
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4.3 Countable sets

Not all infinite sets have the same size. Every infinite sesdu# have bijective correspondence with the
setN of natural numbers. Indeed (or Z) happens to be the smallest infinite set, i.e., any infiniteraest

be at least as big dS is. For a proof, take any infinite set and define a mag : N — A as follows.
Pick an element; from A and setf(1) = a;. Then pick another element from A and setf(2) = as.
Assume that for some € N pairwise distinct elements,, ao, . .., a,, have been chosen from. Since

A is infinite, there remains an element dfnot chosen so far. Pick any such elemept; from A and
setf(n + 1) = an+1. By induction, we then have a well-defined injective funetip : N — A, and
consequentlyN| < |A].

It turns out that for some infinite setsthe functionf constructed as above cannot be surjective irrespective
of how we choose the elements, as, ..., a,,.... This happens becausthas a size strictly bigger than
that of N, and so there cannot exist any surjective function figmmnto A.

Elements of a finiteset A can be counted, i.e., we can build an injective functfonN,, — A as above,
wheren = |A|. This process stops after all of theelements are picked from. So finite sets are called
countable

An infinite setA for which a bijectionf : N — A can be established is also callesuntable Sincef is
bijective (in particular surjective), every element A is the image of some € N under f. This means
thata has been picked during theth step of the counting process. The counting process kendinite,
but the guarantee that every elementdok considered in finite time prompts us to trefs countable.

In order to prove an infinite countable sétto be so, one may produce a bijectign: N — A. In other
words, one may supply a way of numbering elementsiafo that every element ol is covered in the
process and no element is counted more than once in the pro&sceA is infinite, we anyway have
IN| < |A]. It then suffices to show thatl| < |N| (See the Cantor-Schroder-Bernstein theorem). That is, it
suffices to produce an injective mapp— N. To sum up, an infinite sed is countable if and only if there
exists an injective may : A — N. In this assertionN can be replaced by any set that is already known to
be countable.

I will now furnish some countability proofs.

4.4 Proposition Any subset of a countable set is again countable.

Proof Let A be a countable set ardsl C A. If B is finite, it is countable. Otherwise, consider the inclasio
mapB — A, b+— b, which is injective. <

This result implies that the se€%,q4, Zeven, Noada andNeyven are countable.

4.5 Proposition The union of two countable sets is again countable. More rgépethe union of any
finite number of countable sets is again countable.

Proof Let A, B be two countable sets. If one or both of the sets is/are fittien A U B is evidently
countable. So assume that bathand B are infinite. Leta;,ao,...,a,,... andby, b, ..., b,,... be
exhaustive listings of the elements dfand B respectively. | need to produce an exhaustive listing of
the elements oA U B. If we first list the elements ofi, followed by the elements aB, we encounter

a trouble. Here the listing of the elements 4fdoes not terminate after finitely many steps, and so the
elements ofB do not receive a chance of getting listed. A proper listinghaf elements o U B can be
ai,bi,a9,b9,a3,b3,...,a,,b,,.... There is a small catch here: the sdtgnd B need not be disjoint. In
case of a repetition, the second occurrence of an elemekipisexl from the list.

For proving the generalized assertion, Aetountable setsly, ..., A, be provided. We need to show that
A= Uf;l A; is countable. We proceed by induction én The result trivially holds fork = 0,1. So
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suppose that the uniaB of k — 1 setsA1, ..., Ax_; is countable. Butthed = B U A is the union of two
countable sets and is countable too. <

4.6 Proposition The union of a countable number of countable sets is againtable.

Proof Let A,, n € N, be a family of countable sets. We plan to show tHat= (J,,cy A, is countable.
Once again | need to supply a listing of the elementsiah which every element appears after finitely
many steps. Let; ; be thej-th element in a given listing ofl; (eachA; is countable). The following figure
depicts a way of combining the lists.

- PR REREE & S S
83,7 3, 8337 3147 A5
451 Q0. 8537 85, 5

¥ R

//// //// /’
31 32" 33" 834 435
¥ AT
31 %0 83 844 85
¥
a5, a5, 853 854 855

We first lista; ;. We then lista; 2, as 1, thena 3, a2 2, a3 1, and so on. More concretely, we ligt; in the
increasing order of 4 j. For a fixed value of + j, we list the elements; ; in the increasing order of

Of course, we exclude all repetitions in the list, i.e., ifrebelement; ; has already been encountered as
ay 5, then we do not insext; ; again in the list. Also notice that some of the sdtsmay be finite and so
have only finite listings. In that case the elements are not defined after all elements.4f, are exhausted.
During the above diagonal-wise listing, we skip all emptydtions where no defined elements resides

4.7 Proposition The Cartesian product x B of two countable setdl, B is countable. More generally,
the Cartesian product of a finite number of countable setgasmacountable.

Proof For eachu € A the set
B, ={(a,b) | b€ B}

is in bijective correspondence with and so is countable. Thereforg, x B = (J,c4 B, is the union of
countably many countable sets and is countable.

The general statement can be proved easily by inductioneondmber of sets in the given collection. «

But that is all. The Cartesian product of countably many takbie sets is, in general, not countable.

4.8 Proposition The setQ of rational numbers is countable.

Proof Every element ofQ has a normalized representation of the faiftb with « € Z, b € N, and
ged(a, b) = 1. Thus each rational number is identified by a pair of integegs, we can viewQ) as a subset
of Z x N. The result then follows from Propositions 4.4 and 4.7. <
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Maths-savvy students may note thia¢ countable infinity is denoted by the symby pronounced “aleph-
not”. We have essentially proved the following assertidnguaN.

No+ Ry = Np.
kXg = Yo foreveryk € N.
No X No = No.

NE = X, foreveryk e N.

4.4 Proving uncountability using diagonalization

A set A is calleduncountableif it is not countable, i.e., ifA cannot have any bijection with. Proving

that no bijection can exist betweehandN is not as easy task. A technique calidgonalizationoften

helps us here. We start with the assumption thatoes possess a bijective correspondence WitAhen

using diagonalization we arrive at a contradiction impdythat our assumption about the countabilityf
is false. | now present some proofs based on diagonalization

4.9 Proposition The sefR of real numbers is uncountable.

Proof | will prove that the interval
0,1)={zeR|0<z <1}

is uncountable. IR were countable, the intervé, 1) would be countable too (Proposition 4.4). So the
following proof suffices.

Notice first that every real number has a decimal expansiar. réal numbers in the intervad, 1), the
integer part i$) and it suffices to concentrate only on the expansion follgwire decimal point. We consider
infinite decimal expansions only. For examplg3 = 0.3333333333..., 7 — 3 = 0.1415926535 . . ., etc.
If the decimal expansion of some real number is terminatimg,append an infinite number 6% in the

expansion. For exampl&/8 = 0.3750000000. ... Some real numbers do have two infinite expansions,
like 3/8 = 0.3750000000... = 0.3749999999.... In such a case we pick one of these two expansions
arbitrarily.

Assume thaf0, 1) is countable. Then there exists a bijectibn N — [0,1). We write down the decimal
expansion of eaclf(n) (resolving ambiguities arbitrarily, if necessary) as dols. Here each, ; is a
decimal digit (an integer betwe@nand9).

( 0. % aj20a13a1,4a15..-a1n ---
f(2)= 0.a21a22a23a240a25...a2,5 ...
f(3) = 0. a3,1 a372 % a374 a3,5 e ag’n e
f(4)= 0.a41 a42a43a44a45... a1, ...
f( ) 0. a5,1 a572 a5,3 a574 % e a5,n e

f(n) = 0. Gn,10n,2 Gn 3004 0n5..-Gpn - - -

b= 0.b1 by b3 by b5 ... by ...

We now look at the diagonal digitg; 1,a22,...,ann,... In order to construct the decimal expansion
0.b1b2...b, ... of areal numbeb. We take the:-th digit b,, of b as:

b :{2 if ann,=1,
" 1 otherwise.
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Clearly,b € [0,1). Sincef is surjective, we must have= f(n) for somen € N. But by the construction
of b, then-th digits ofb and f(n) are different. Moreover, the decimal expansiorb@onsists only ofl’s
and2’s, and so has a unique expansion. Therefore, we cannot havef(n), a contradiction. <

The above example illustrates the construction of an eléfef an uncountable set, which is forced

to differ from eachf(n) at at least one point. So we cannot have: f(n) for anyn € N, i.e., no map

f : N — A can be surjective. Usually, the point at whitltiffers from f(n) lies on the diagonal in a
pictorial representation. This is why the name diagon&timais used.

A slight modification of the above proof implies the followjimesult. Herex is any finite set of size at least
2. For exampleX may be the binary alphab¢®, 1}, or the decimal alphabdb, 1,2, ...,9} or the Roman
alphabet{a,b,c, ..., z}.

4.10 Proposition The set of infinite sequences ovelis uncountable. <

Thus the Cartesian product of countably many finite sets neetle countable. In fact,
kR >, for any integerk > 2.

Now | will prove another important result using diagonatiaa.

4.11 Proposition For any set4, there cannot exist a bijection betwednand its power seP(A). In
particular, the number of subsets of any countably infirdtesuncountable.

Proof Take any setl, and assume thgt: A — P(A) is a bijection. Construct a subsBtof A as follows:

B={acAlad f(a)}.

Since f is surjective, there exists € A such thatB = f(a). If a € f(a), thena ¢ B (This is howB
is constructed). BuB = f(a), and soa ¢ f(a). On the other hand, i ¢ f(a), thena € B (by the
construction ofB), i.e.,a € f(a) (sinceB = f(a)). Thus we have proved thate f(a) < a ¢ f(a).
This is absurd. <

In the above proof, the sét is forced to differ from eacty(a) with respect to the inclusion af. If a
belongs tof (a), we do not include: in B. On the other hand, if does not belong tg(a), we includea in
B. In this way B is forced to lie outside the range ¢f If you still wonder what is diagonal in the above
argument, here is a visualization for a special case. Take N. For B C A, define the characteristic
functionCp : A — {0,1} as:

|1 ifa€eB,
CB(C‘)_{O if a ¢ B.

Now | make a two-dimensional listing «iff(n) (1), wheren runs over the rows, andover the columns.

Crm (1)
n f(n) i=1]i=2[i=3|i=4]i=5
I 0 0Ol 0000
2 {2,4,6,8} o | 1| 0o | 1] o0
3 {23571,y | 0 | 1 | 1 | 0 | 1
4| {1,3,5,7,9,...} 1 0 1 0 1
5 1{1,2,3,5813,...}| 1 | 1 | 1 | 0o | 1
B {4, T [0 [0 10
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Here B is constructed to force th&tp(n) is different from the diagonal valu€y,,)(n).

The sefR of real numbers is uncountable. Its size is denoted, lagR is often referred to as theontinuum
We have proved that

c>Ng.

There exist infinite sets whose sizes are bigger thaRor example, the power set &f is of size strictly
bigger tharr.

Does there exist a set of size strictly betwégrandc? The answer is not known. Georg Cantor conjectured
that no such set exists. This famous unproven conjectuefasred to as theontinuum hypothesis

4.5 Application: Computers cannot solve all problems

Computer theoreticians have devised a way to characteoaggtational problems mathematically. This
characterization requires the introduction of a seriesafiinitions.

An alphabetis a finite set. Members of an alphabet are cafigahbols We use upper-case Greek letters like
33, T' for naming alphabets. An alphabet is typically used to regmé languages. For example, the Roman
alphabet (‘a’ through ‘z’, space, and punctuation marksisid to express the language of English in written
form. Similarly, the alphabet consisting of digits (0 thghu9), the decimal point, and the signs &énd—)

can be used to represent the language of real numbers. If wetwavrite complex numbers, we use an
additional symboli (some people usgor . instead) in the representation alphabet. In all these elanp
we describe infinite sets using finitely many symbols.

A string over an alphabeX is a finitesequence of symbols frodd. For example, ‘abracadabra’, ‘zyzzyva’,
‘Madam, I'm Adam!" are English strings+0.1123581321, —435 are numeric strings. A string is finite in
length by definition, and is different from a set in that thderof the symbols in the sequence is important,
and repetitions of symbols are allowed in the sequence. ¥ample, the numeric stringk231, +1231,
01231 are distinct from one another (although they refer to theesaalue). Moreover]231 is different
from 1123 and also froml 23.

The set of all strings over an alphabeis denoted by=*. An important fact abouE* is the following:

4.12 Proposition X* is countably infinite.

Proof Thelengthof a string is the number of symbols in the string. For examtble length ofl 231 is 4,
and the length 0f-01231 is 6. We can writex* as the union oE! for l = 0, 1,2, ..., whereX! is the set of
all strings overX having length. Eachx! has finite size (nameljz|'), and so is countable. Thi is the
union of countably many countable sets. <

The above proposition remains valid even if we allBvto be countably infinite.

A languageover X is a subset ob*. For example, the language of English consists preciselhage
strings (over the Roman alphabet) that has an interpretati&€nglish. Thus, ‘Madam, I’'m Adam!’ is in
the English language, whereas ‘| Adam, Madam am!’ is not énEnglish language. Similarly0.12.345
is not a numeric string (i.e., not in the language of real nerah

The set of all languages ovEris precisely the power s@?(X*) of X*.

4.13 Proposition P(X*) is uncountable.

Proof No set can have a bijective correspondence with its power set <
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Now suppose that we have an alphabeind we want to represent a language dvefThe representation

is done by dinite description called grammarfor the language. For example, the English language is
described by the English grammar. The language of real ntgribalescribed by the rule: “optionally a
sign, followed by zero or more (but finitely many) digits, ltaed optionally by the decimal point and
another finite sequence of zero or more decimal digits”. Qirse, you may disallow exceptions like’,
‘“+.',and ‘—.".

Examples of languages with better computational flavoruidelthe language of primes (those decimal
strings representing positive primes), the language aflv@lprograms (the C language), and so on. The
language of primes have a mathematical description (sontelike (a | p) = (a = 1) V (a = p)). The C
language is specified by a grammar that compilers shouldvwiolvhile compiling a program.

In all these examples, a language is specified by a grammahvifsielf is a string over some alphabet
T". Notice that the representation alphalbetay be different from the alphabéi of the language being

described. That is not a big issue as long as kotandI" remain finite (or countable). What is more
important here is that any grammar has to be finite. For exanyplur C compiler cannot follow an infinite

grammar, for if so, some programs would require infinite tidoueing compilation.

A (computationallproblemis defined as follows: Given the finite representation of glemeL overX and
a stringa overX:, determine whethar € L. Each language is, therefore, a problem, and conversely!

If L itself is finite, we can list the strings ih one by one. The list fits in a finite amount of space, and
is a grammar for.. One can exhaustively search ferin the list. On the other hand, & is infinite, an
exhaustive listing of the elements bfis not finite, and a grammar fdr has to resort to other means. But
then some procedure must also be specified in order to iglemtiethera. can be generated using the rules
in this grammar. This procedure is precisely what we meaodmgputation

Suppose that we are interested in languages over the alpiiaBeippose also that we use the representation
alphabefl” for writing grammars. (Since symbols in any alphabet canrmded in binary, you can take

Y =T = {0,1}.) The set of languages ov&ris P(X*) which is proved earlier to be uncountable. On
the other hand]™ is countable, so we can write grammars for only countably yrlanguages. Ability

to express a language by a grammar does not immediately deal dlgorithm to solve the corresponding
problem. That is, the set of problems that have algorithinat (is, that can be solved by computers) is a
(potentially strict) subset of the set of languages thatlmnepresented by grammars, and so is countable
too. It turns out that we can solve only countably many pnoiseising computers, whereas the number of
problems is uncountable. It then follows that computersioasolve uncountably many problems (in fact,
more problems than they can solve).

This dark reality follows from simple counting (well, cowatility) arguments. Locating problems that
cannot be solved by computers (and proving them to be ungelvis, however, not an easy task. We often
use diagonalization proofs to this effect. All these aredefo be discussed in a course on formal languages
and automata theory (or in an advanced sequel to that course)

Exercises

Prove that the setS;, k£ > 0, used in the proof of the Cantor-Schroder-Bernstein theoare pairwise disjoint.
Determine the sef and the corresponding bijection for the mapsN — Z andg : Z — N, wheref is the inclusion
map, andg is defined ag)(0) = 1,9(1) = 2,9(-1) = 4,9(2) = 5,9(=2) = 7,...,9(n) = 3n — 1,9(—n) =
3n+1,....

Determine the se$' and the corresponding bijection for the maps Neyen — N andg : N — N, defined by
f(a) = aandg(b) = 4b. Argue that this bijection is the inverse of the nfdp— N.y., constructed in Example 4.3.

Prove that a set is countable if and only if it has bijectiveeespondence with a subsetf
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Let A be a countable set. Prove that:
(@) The set of all finite subsets of is countable.
(b) The set of all infinite subsets of is uncountable.

(a) LetZ[X] denote the set of polynomials in one indetermin&tand with integer coefficients. Prove tHafX] is
countable.

(b) Letk be afixed positive integer. Prove that the Z¢K;, X, ..., X] of multivariate polynomials with integer
coefficients is countable.

(c) Provethatthe séf[X;, X, ..., X, ...] of palynomials with countably infinite indeterminates anithvinteger
coefficients is countable.

Prove that the séL[[ X]] of power series with integer coefficients is uncountable.

A real or complex numbew is calledalgebraicif f(«) = 0 for some non-zero polynomigf(X) with integer
coefficients. LetA denote the set of all algebraic numbers. (We have C.)

(a) Prove thatA is countable.
(b) Conclude that there are uncountably many transcendentabers.

Let A be a countably infinite set anfd a finite set. Prove that:
(8 The set of all functiongl — B is uncountable.
(b) The set of all function®3 — A is countable.

(a) Leta,bbe real numbers with < b. Supply an explicit bijection between the interviilsl) andla, b).
(b) Suggest an explicit bijection between the interfgall ) and the entire real lin&.

Let A, B be sets, wherd is equinumerous witlR andB is equinumerous witlN. Prove thatd U B is equinumerous
with R. (This meang + Xy = ¢.)

Let A be a countable set. Prove that the set of all functidns- {0, 1} is equinumerous witiR (i.e., 2% = ¢).
Conclude that the power st A) is equinumerous witfR.

Prove that the set of all permutations of a countable settisauntable. (One can shawg! = ¢.)

Prove that the union of two sets each equinumerous®ith again equinumerous witR (i.e.,c + ¢ = ¢).

Prove that the union of countably many sets each equinurseritiuR is again equinumerous witRi (i.e.,Rgx ¢ = ¢).
Prove that the real intervf, 1) is equinumerous with the two-dimensional squiéitd ) x [0,1) (i.e.,c x ¢ = ¢).

(a) Prove that we can represent every integer in finite spaceusily finitely many symbols (digits and signs).
(b) Prove that we can represent every rational number in findespising only finitely many symbols.
(c) Prove that the set of real numbers that have finite decimalmsipns is countable. (This set is a subsé@gf

(d) Prove that every rational number has terminating or repgatecimal expansion. Enclose the repeating part in
a decimal expansion by a pair of curly braces. For examiplg,= 0.{3}, 1.2{142857} = 1 + (2/10) + (1/70) =
85/70 = 17/14. Conclude that the inclusion of the extra symbpland} lets us represent each rational number in
finite space only.

(e) Prove that the set of finite arithmetic expressions inv@viational numbers represented as in the previous part,
arithmetic operators{, —, x, and/), and parentheses is countable.

(f) Argue that allowing countably many symbols representingase, cube,. . roots in arithmetic expressions leaves
the set of finitely representable numbers countable.

(g) Now allow well-known transcendental numbers likee in arithmetic expressions. Prove that the set of finitely
representable numbers still remains countable.
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