CS21201/CS21001 Discrete Structures, Autumn 2022–2023

Class Test 2

02–November–2022	06:30pm-07:30pm	Maximum marks: 20
Roll no:	Name:	
Write your answers If you use any algorithms	in the question paper itself. Be brief and precisition the class, just m	se. Answer <u>all</u> questions. Thention it, do not elaborate.
1. Let \mathbb{N} be the set of all position	ive integers. By constructing explicit injective	maps, prove that the two sets
A = The set of all su B = The set of all su	bsets of \mathbb{N} , and bsets of \mathbb{N} that do not contain consecutive inte	gers
are equinumerous. Are thes	e sets countable? Give a justification in only of	ne sentence. $(6+2)$

Solution Since $B \subseteq A$, we have $|B| \leq |A|$ (consider the inclusion map). For proving that $|A| \leq |B|$, consider the injective map $A \to B$ that takes $S \subseteq \mathbb{N}$ to the subset $\{2n \mid n \in S\}$ of \mathbb{N} . Another possibility is mapping $\{a_1, a_2, a_3, \ldots\}$ with $a_1 < a_2 < a_3 < \cdots$ to $\{a_1, a_2 + 1, a_3 + 2, \ldots\}$.

These sets are not countable, because \mathbb{N} (a countable set) cannot be equinumerous with its power set A.

2. A sequence $a_0, a_1, a_2, a_3, \ldots$ is defined recursively as

 $a_0 = 1,$ $a_n = a_{n-1} + 2a_{n-2} + 3a_{n-3} + \dots + na_0$ for $n \ge 1.$

(a) Derive a closed-form expression for the generating function A(x) of this sequence. Show all the steps of your derivation. (Hint: Use convolution.) (5)

Solution We have

$$A(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$

= $1 + \sum_{n \ge 1} (a_{n-1} + 2a_{n-2} + 3a_{n-3} + \dots + na_0) x^n$
= $1 + x(a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots)(1 + 2x + 3x^2 + 4x^3 + \dots)$
= $1 + \frac{xA(x)}{(1-x)^2}$.

Simplification gives

$$A(x) = \frac{(1-x)^2}{1-3x+x^2}.$$

Solution We have

$$A(x) = \frac{(1-x)^2}{1-3x+x^2} = 1 + \frac{x}{1-3x+x^2} = 1 + \frac{x}{(1-\alpha x)(1-\beta x)}$$

where $\alpha = \frac{3+\sqrt{5}}{2}$ and $\beta = \frac{3-\sqrt{5}}{2}$. Now, write

$$\frac{x}{(1-\alpha x)(1-\beta x)} = \frac{A}{1-\alpha x} + \frac{B}{1-\beta x},$$

that is,

$$x = A(1 - \beta x) + B(1 - \alpha x).$$

Equating the constant term from both sides gives A + B = 0, that is, B = -A. Then we equate the coefficient of *x* from both sides to get $1 = (\alpha - \beta)A$. This gives $A = \frac{1}{\sqrt{5}}$ and $B = -\frac{1}{\sqrt{5}}$. We therefore have

$$a_n = \begin{cases} 1 & \text{if } n = 0, \\ \frac{1}{\sqrt{5}} \left[\left(\frac{3 + \sqrt{5}}{2} \right)^n - \left(\frac{3 - \sqrt{5}}{2} \right)^n \right] & \text{if } n \ge 1. \end{cases}$$

(c) From the formula of a_n derived in Part (b), deduce that $a_n = F_{2n}$ for all $n \ge 1$, where $F_0, F_1, F_2, ...$ is the Fibonacci sequence. (Hint: Use (without proving) the formula for Fibonacci numbers derived in the class.) (2)

Solution We have

$$F_{2n} = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{2n} - \left(\frac{1-\sqrt{5}}{2} \right)^{2n} \right].$$

Finally, note that $\left(\frac{1+\sqrt{5}}{2} \right)^2 = \frac{3+\sqrt{5}}{2}$, and $\left(\frac{1-\sqrt{5}}{2} \right)^2 = \frac{3-\sqrt{5}}{2}.$