Roll no: \qquad Name:
Write your answers in the question paper itself. Be brief and precise. Answer all questions.
[If you use any algorithm/result/formula covered in the class, just mention it, do not elaborate.]

1. Let \mathbb{N} be the set of all positive integers. By constructing explicit injective maps, prove that the two sets
$A=$ The set of all subsets of \mathbb{N}, and
$B=$ The set of all subsets of \mathbb{N} that do not contain consecutive integers are equinumerous. Are these sets countable? Give a justification in only one sentence.

Solution Since $B \subseteq A$, we have $|B| \leqslant|A|$ (consider the inclusion map). For proving that $|A| \leqslant|B|$, consider the injective map $A \rightarrow B$ that takes $S \subseteq \mathbb{N}$ to the subset $\{2 n \mid n \in S\}$ of \mathbb{N}. Another possibility is mapping $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ with $a_{1}<a_{2}<a_{3}<\cdots$ to $\left\{a_{1}, a_{2}+1, a_{3}+2, \ldots\right\}$.
These sets are not countable, because \mathbb{N} (a countable set) cannot be equinumerous with its power set A.
2. A sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$ is defined recursively as

$$
\begin{aligned}
& a_{0}=1 \\
& a_{n}=a_{n-1}+2 a_{n-2}+3 a_{n-3}+\cdots+n a_{0} \text { for } n \geqslant 1
\end{aligned}
$$

(a) Derive a closed-form expression for the generating function $A(x)$ of this sequence. Show all the steps of your derivation. (Hint: Use convolution.)

Solution We have

$$
\begin{aligned}
A(x) & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots \\
& =1+\sum_{n \geqslant 1}\left(a_{n-1}+2 a_{n-2}+3 a_{n-3}+\cdots+n a_{0}\right) x^{n} \\
& =1+x\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots\right)\left(1+2 x+3 x^{2}+4 x^{3}+\cdots\right) \\
& =1+\frac{x A(x)}{(1-x)^{2}} .
\end{aligned}
$$

Simplification gives

$$
A(x)=\frac{(1-x)^{2}}{1-3 x+x^{2}}
$$

(b) From the generating function of Part (a), derive a closed-form formula for a_{n}. Show all the steps.

Solution We have

$$
A(x)=\frac{(1-x)^{2}}{1-3 x+x^{2}}=1+\frac{x}{1-3 x+x^{2}}=1+\frac{x}{(1-\alpha x)(1-\beta x)}
$$

where $\alpha=\frac{3+\sqrt{5}}{2}$ and $\beta=\frac{3-\sqrt{5}}{2}$. Now, write

$$
\frac{x}{(1-\alpha x)(1-\beta x)}=\frac{A}{1-\alpha x}+\frac{B}{1-\beta x},
$$

that is,

$$
x=A(1-\beta x)+B(1-\alpha x)
$$

Equating the constant term from both sides gives $A+B=0$, that is, $B=-A$. Then we equate the coefficient of x from both sides to get $1=(\alpha-\beta) A$. This gives $A=\frac{1}{\sqrt{5}}$ and $B=-\frac{1}{\sqrt{5}}$. We therefore have

$$
a_{n}= \begin{cases}1 & \frac{1}{\sqrt{5}}\left[\left(\frac{3+\sqrt{5}}{2}\right)^{n}-\left(\frac{3-\sqrt{5}}{2}\right)^{n}\right] \quad \begin{array}{l}
\text { if } n=0 \\
\text { if } n \geqslant 1
\end{array} . . .\end{cases}
$$

(c) From the formula of a_{n} derived in Part (b), deduce that $a_{n}=F_{2 n}$ for all $n \geqslant 1$, where $F_{0}, F_{1}, F_{2}, \ldots$ is the Fibonacci sequence. (Hint: Use (without proving) the formula for Fibonacci numbers derived in the class.)

Solution We have

$$
F_{2 n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{2 n}-\left(\frac{1-\sqrt{5}}{2}\right)^{2 n}\right]
$$

Finally, note that $\left(\frac{1+\sqrt{5}}{2}\right)^{2}=\frac{3+\sqrt{5}}{2}$, and $\left(\frac{1-\sqrt{5}}{2}\right)^{2}=\frac{3-\sqrt{5}}{2}$.

