Solving Linear Recurrences

of Constant Orders

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

October 27, 2022

First-Order Recurrences

- Initial condition: A constant is supplied as a_0 or a_1 .
- $a_n = c(n)a_{n-1} + f(n)$
- Unwind the recurrence

$$a_n = c(n)a_{n-1} + f(n)$$

= $c(n)(c(n-1)a_{n-2} + f(n-1)) + f(n)$
= $c(n)c(n-1)a_{n-2} + c(n)f(n-1) + f(n)$
= $c(n)c(n-1)(c(n-2)a_{n-3} + f(n-2)) + [c(n)f(n-1) + f(n)]$
= $c(n)c(n-1)c(n-2)a_{n-3} + [c(n)c(n-1)f(n-2) + c(n)f(n-1) + f(n)]$
...

• Eventually a_n is expressed in terms of the initial condition.

Tower of Hanoi

- Let *n* be the number of disks initially on Peg A.
- Let t_n be the minimum number of disk movements for n disks.
- $t_1 = 1$.
- $t_n = 2t_{n-1} + 1$ for $n \ge 2$.
- Unwind the recurrence:

$$t_n = 2t_{n-1} + 1 = 2(2t_{n-2} + 1) + 1 = 2^2t_{n-2} + (2+1)$$

= $2^2(2t_{n-3} + 1) + (2+1) = 2^3t_{n-3} + (2^2 + 2 + 1) = \cdots$
= $2^{n-1}t_1 + (2^{n-2} + \dots + 2^2 + 2 + 1) = 2^{n-1} + 2^{n-2} + \dots + 2^2 + 2 + 1 = 2^n - 1.$

Bubble sort

- Let c_n be the number of comparisons made for an array of size n.
- We have $c_1 = 0$, and $c_n = c_{n-1} + (n-1)$ for $n \ge 2$.
- Unwind the recurrence:

$$c_n = c_{n-1} + (n-1)$$

= $c_{n-2} + (n-2) + (n-1)$
= $c_{n-3} + (n-3) + (n-2) + (n-1)$
...
= $c_1 + (1+2+\dots+(n-3)+(n-2)+(n-1))$
= $\frac{n(n-1)}{2}$.

Converting to the Homogeneous Form

- The recurrence $a_n = ca_{n-1}$ is easy to solve even if *c* is a non-constant function of *n*.
- Sometimes, we may convert a first-order recurrence to this form.

• Solve:
$$a_0 = 1$$
, and $a_n = na_{n-1} - n(n-2)$ for $n \ge 1$.

- We have $a_n = na_{n-1} n^2 + 2n$, that is, $a_n n = na_{n-1} n(n-1) = n(a_{n-1} (n-1))$.
- Let $b_n = a_n n$ for all $n \ge 0$.
- We have $b_0 = 1$ and $b_n = nb_{n-1}$ for $n \ge 1$.
- Unwinding gives $b_n = n!$ for all $n \ge 0$.
- Therefore $a_n = n! + n$ for all $n \ge 0$.

Higher-Order Recurrences with Constant Coefficients

- Take a constant $k \in \mathbb{N}, k \ge 2$.
- General form: $c_k a_n + c_{k-1} a_{n-1} + \dots + c_0 a_{n-k} = f(n)$.
- Here $c_k, c_{k-1}, \ldots, c_0$ are real-valued constants with $c_k \neq 0$ and $c_0 \neq 0$.
- *k* is the order of the recurrence.
- You need k initial conditions (like $a_0, a_1, \ldots, a_{k-1}$).
- Homogeneous recurrences: f(n) = 0.
- Non-homogeneous recurrences: $f(n) \neq 0$.
- The recurrence can be converted to the standard form

$$a_n = c_{k-1}a_{n-1} + c_{k-2}a_{n-2} + \dots + c_0a_{n-k} + f(n).$$

Unwinding does not help

- Fibonacci numbers: $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$.
- $F_n = F_{n-1} + F_{n-2} = (F_{n-2} + F_{n-3}) + F_{n-2} = 2F_{n-2} + F_{n-3} = 2(F_{n-3} + F_{n-4}) + F_{n-3} = 3F_{n-3} + 2F_{n-4} = 3(F_{n-4} + F_{n-5}) + 2F_{n-4} = 5F_{n-4} + 3F_{n-5} = \cdots$
- We have essentially established that $F_n = F_{k+1}F_{n-k} + F_kF_{n-k-1}$ for k = 1, 2, 3, ...
- Put k = n 1 to get $F_n = F_n F_1 + F_{n-1} F_0 = F_n \times 1 + F_{n-1} \times 0 = F_n$.
- This is true, but useless.
- Generating functions can help.
- We have a standard procedure if
 - the coefficients $c_k, c_{k-1}, \ldots, c_0$ are constant, and
 - f(n) is of some specific forms.
- The procedure is the discrete analog of solving differential equations.

The Characteristic Equation

- Homogeneous recurrence: $c_k a_n + c_{k-1} a_{n-1} + \dots + c_0 a_{n-k} = 0$.
- The solution of $a_n = ra_{n-1}$ is of the form $a_n = Ar^n$ for some constant A.
- We have $r \neq 0$. In general, we also have $A \neq 0$.
- Plugging in $a_n = Ar^n$ gives $c_k Ar^n + c_{k-1}Ar^{n-1} + \dots + c_0Ar^{n-k} = 0$.
- Since A and r are non-zero, this gives the characteristic equation

$$c_k r^k + c_{k-1} r^{k-1} + \dots + c_0 = 0.$$

• For the homogeneous recurrence of the standard form $a_n = c_{k-1}a_{n-1} + c_{k-2}a_{n-2} + \dots + c_0a_{n-k}$, the characteristic equation is

$$r^{k} - c_{k-1}r^{k-1} - c_{k-2}r^{k-2} - \dots - c_{0} = 0.$$

• We need to factor the characteristic polynomial to get all its roots *r*.

Case of Unrepeated Roots

- The roots of the characteristic equation are real numbers and/or complex conjugate pairs.
- Assume that the k roots r_1, r_2, \ldots, r_k are distinct from one another.
- The solution for the recurrence is given by

$$A_1r_1^n + A_2r_2^n + \dots + A_kr_k^n$$

for some constants A_1, A_2, \ldots, A_k .

- Plug in the *k* initial values to get a system of linear equations in A_1, A_2, \ldots, A_k .
- Solve the system to obtain these coefficients.

Fibonacci Numbers

- $F_0 = 0, F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$.
- The characteristic equation is $r^2 r 1 = 0$.

• The roots are
$$\rho = \frac{1+\sqrt{5}}{2}$$
 and $\bar{\rho} = \frac{1-\sqrt{5}}{2}$.

• We have
$$F_n = A\rho^n + B\bar{\rho}^n$$
 for all $n \ge 0$.

- The initial conditions give A + B = 0 and $A\rho + B\bar{\rho} = 1$.
- This linear system has the solution $A = \frac{1}{\sqrt{5}}$ and $B = -\frac{1}{\sqrt{5}}$.
- Therefore for all $n \ge 0$, we have

$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right] = \frac{\rho^n - \bar{\rho}^n}{\rho - \bar{\rho}}.$$

Covering a $2 \times n$ **Board by Dominoes**

Possibilities

•
$$d_1 = 1, d_2 = 2, d_n = d_{n-1} + d_{n-2}$$
 for $n \ge 3$.

• $d_n = F_{n+1}$ for all $n \ge 1$.

Palindromic Compositions of *n*

- $p_1 = 1$ and $p_2 = 2$.
- Take $n \ge 3$.
- A palindromic composition of *n* can be obtained from that of n-2 in two ways.
 - Add the summand 1 at the two ends.
 - Add 1 to the leftmost and the rightmost summands (may be the same).
- $p_n = 2p_{n-2}$ for $n \ge 3$. This is of order 2 with CE $r^2 2 = 0$, that is, $r = \pm \sqrt{2}$.
- The solution is $p_n = A(\sqrt{2})^n + B(\sqrt{2})^n$.

•
$$p_n = \left(\frac{\sqrt{2}+1}{2\sqrt{2}}\right)(\sqrt{2})^n + \left(\frac{\sqrt{2}-1}{2\sqrt{2}}\right)(-\sqrt{2})^n$$
 for all $n \ge 1$.

• This simplifies to $p_n = 2^{\lfloor n/2 \rfloor}$ for all $n \ge 1$.

Dominoes Again

Dominoes Again: The Solution

- Initial conditions: $d_1 = 1$, $d_2 = 5$ and $d_3 = 11$.
- Recurrence: $d_n = d_{n-1} + 4d_{n-2} + 2d_{n-3}$ for $n \ge 4$.
- The characteristic equation $r^3 r^2 4r 2 = 0$ has roots $-1, 1 + \sqrt{3}, 1 \sqrt{3}$.
- The initial conditions give

$$d_n = (-1)^n + \frac{1}{\sqrt{3}}(1+\sqrt{3})^n - \frac{1}{\sqrt{3}}(1-\sqrt{3})^n$$

for all $n \ge 1$.

Complex Roots

- Solve: $a_0 = 1$, $a_1 = 2$, $a_n = 2(a_{n-1} a_{n-2})$ for $n \ge 2$.
- The characteristic equation is $r^2 2r + 2 = 0$, that is, $(r-1)^2 = -1$, that is, $r = 1 \pm i$.
- We have $1 + i = \sqrt{2}e^{i\pi/4}$ and $1 i = \sqrt{2}e^{-i\pi/4}$.
- Therefore $a_n = A(\sqrt{2})^n e^{in\pi/4} + B(\sqrt{2})^n e^{-in\pi/4}$.
- The initial conditions give $a_0 = 1 = A + B$ and $a_1 = 2 = A(1 + i) + B(1 i)$.
- Solving gives $A = \frac{1}{2}(1-i) = \frac{1}{\sqrt{2}}e^{-i\pi/4}$, and $B = \frac{1}{2}(1+i) = \frac{1}{\sqrt{2}}e^{i\pi/4}$.
- Therefore $a_n = (\sqrt{2})^{n-1} \left[e^{i(n-1)\pi/4} + e^{-i(n-1)\pi/4} \right] = (\sqrt{2})^{n+1} \cos\left[(n-1)\pi/4 \right] = (\sqrt{2})^n \left[\cos(n\pi/4) + \sin(n\pi/4) \right].$

- Let *r* be a root of the characteristic equation of multiplicity *m*.
- The contribution of *r* in the solution is

$$(A_{m-1}n^{m-1}+A_{m-2}n^{m-2}+\cdots+A_1n+A_0)r^n,$$

where $A_0, A_1, \ldots, A_{m-1}$ are constants.

• The solutions $n^i r^n$ are linearly independent for i = 0, 1, 2, ..., m - 1.

Repeated Roots: Example

- Solve: $a_0 = 1$, $a_1 = 2$, $a_2 = 7$, $a_n = a_{n-1} + a_{n-2} a_{n-3}$ for $n \ge 3$.
- The characteristic equation is $r^3 r^2 r + 1 = 0$, that is, $(r-1)^2(r+1) = 0$.
- The solution is of the form $a_n = (A_1n + A_0) \times 1^n + B \times (-1)^n$.
- The initial conditions give $A_0 + B = 1$, $A_1 + A_0 B = 2$, and $2A_1 + A_0 + B = 7$.
- The linear system has the solution $A_1 = 3$, $A_0 = 0$, and B = 1.
- We therefore have $a_n = 3n + (-1)^n$ for all $n \ge 0$.

Nonhomogeneous Recurrences

- $a_n = c_{k-1}a_{n-1} + c_{k-2}a_{n-2} + \dots + c_0a_{n-k} + f(n)$ with c_0, c_1, \dots, c_{k-1} constants and $f(n) \neq 0$.
- The recurrence is solvable for f(n) of special forms.
- Procedure
 - Consider the homogeneous recurrence $a_n = c_{k-1}a_{n-1} + c_{k-2}a_{n-2} + \dots + c_0a_{n-k}$.
 - From the characteristic equation, determine the general form of the homogeneous solution $a_n^{(h)}$. Do not compute the coefficients in $a_n^{(h)}$ now.
 - Determine the general form of the particular solution $a_n^{(p)}$ from f(n) and the characteristic equation.
 - Plug in the particular solution in the nonhomogeneous recurrence: $a_n^{(p)} = c_{k-1}a_{n-1}^{(p)} + c_{k-2}a_{n-2}^{(p)} + \dots + c_0a_{n-k}^{(p)} + f(n)$. This gives $a_n^{(p)}$ fully.
 - The solution to the nonhomogeneous recurrence is $a_n = a_n^{(h)} + a_n^{(p)}$ with $a_n^{(p)}$ known.
 - Plug in the initial conditions to determine (the coefficients in) $a_n^{(h)}$.

A Special Form of f(n)

- We consider $f(n) = p(n)s^n$, where
 - p(n) is a non-zero polynomial of degree $t \ge 0$, and
 - *s* is a non-zero constant. We can have the invisible s = 1.
- Let *m* be the multiplicity of *s* as a root of the characteristic equation.
- If s is not a root of the characteristic equation, then m = 0.
- The particular solution is of the form

$$a_n^{(p)} = n^m \Big(U_t n^t + U_{t-1} n^{t-1} + \dots + U_1 n + U_0 \Big) s^n,$$

where U_0, U_1, \ldots, U_t are constants.

- Put this solution in the given recurrence, and equate coefficients of n^i from both sides.
- This gives a linear system that determines U_0, U_1, \ldots, U_t .

Tower of Hanoi Revisited

- $t_1 = 1$, and $t_n = 2t_{n-1} + 1$ for $n \ge 2$.
- The characteristic equation is r 2 = 0, that is, r = 2.
- The homogeneous solution is of the form $a_n^{(h)} = A \times 2^n$.
- The nonhomogeneous part is 1, so p(n) = 1 and s = 1 (s is not a root of the CE).
- We therefore have $t_n^{(p)} = n^0(U)1^n = U$.
- Put this in the recurrence to get U = 2U + 1, that is, U = -1, that is, $t_n^{(p)} = -1$.
- Therefore $t_n = t_n^{(h)} + t_n^{(p)} = A \times 2^n 1$.
- Now use $t_1 = 1$ to get 1 = 2A 1, that is, A = 1.
- The final solution is $t_n = 2^n 1$ for all $n \ge 1$.

Counting Sums in Recursive Fibonacci-Number Computation

•
$$s_0 = 0$$
, $s_1 = 0$, and $s_n = s_{n-1} + s_{n-2} + 1$ for $n \ge 2$.

- CE: $r^2 r 1 = 0$. The roots are $\rho = \frac{1+\sqrt{5}}{2}$ and $\bar{\rho} = \frac{1-\sqrt{5}}{2}$.
- $s_n^{(h)} = A\rho^n + B\bar{\rho}^n$.
- $s_n^{(p)} = U$, so U = U + U + 1, that is, U = -1, that is, $s_n = A\rho^n + B\bar{\rho}^n 1$.
- The initial conditions give $s_0 = 0 = A + B 1$ and $0 = A\rho + B\bar{\rho} 1$.

• Solving gives
$$A = \frac{1+\sqrt{5}}{2\sqrt{5}}$$
 and $B = -\left(\frac{1-\sqrt{5}}{2\sqrt{5}}\right)$.

• Therefore the solution is

$$s_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right] - 1$$

for all $n \ge 0$. Indeed $s_n = F_{n+1} - 1$.

Nonhomogeneous Recurrence: Example

- Solve: $a_0 = 8$, $a_1 = 21$, and $a_n = a_{n-1} + 2a_{n-2} + 2n(2n+1)3^{n-2}$ for $n \ge 2$.
- CE: $r^2 r 2 = (r+1)(r-2) = 0$, that is, r = -1, 2, so $a_n^{(h)} = A(-1)^n + B2^n$.
- Particular solution: $p(n) = \frac{4}{9}n^2 + \frac{2}{9}n$ is of degree 2, and s = 3 is not a root of the CE), so $a_n^{(p)} = (U_2n^2 + U_1n + U_0)3^n$.
- Putting this in the recurrence and dividing by 3^{n-2} , we get $9(U_2n^2 + U_1n + U_0) = 3(U_2(n-1)^2 + U_1(n-1) + U_0) + 2(U_2(n-2)^2 + U_1(n-2) + U_0) + 2n(2n+1).$
- Method of undetermined coefficients
 - Coefficient of n^2 : $9U_2 = 3U_2 + 2U_2 + 4$, that is, $U_2 = 1$.
 - Coefficient of $n: 9U_1 = -6U_2 + 3U_1 8U_2 + 2U_1 + 2$, that is, $U_1 = -3$.
 - Constant term: $9U_0 = 3U_2 3U_1 + 3U_0 + 8U_2 4U_1 + 2U_0$, that is, $U_0 = 8$.

Nonhomogeneous Recurrence: Example (Continued)

•
$$a_n^{(p)} = (n^2 - 3n + 8)3^n$$
.
• $a_n = a_n^{(h)} + a_n^{(p)} = A(-1)^n + B2^n + (n^2 - 3n + 8)3^n$.

•
$$a_0 = 8 = A + B + 8$$
, that is, $A + B = 0$.

•
$$a_1 = 21 = -A + 2B + 18$$
, that is, $-A + 2B = 3$.

- Solving this system, we get A = -1 and B = 1.
- Therefore for all $n \ge 0$, we have

 $\langle \dots \rangle$

$$a_n = 2^n - (-1)^n + (n^2 - 3n + 8)3^n.$$

Example: s is a Root of the Characteristic Equation

• Solve:
$$a_0 = 0$$
, $a_1 = 1$, and $a_n = a_{n-2} + n^2$ for $n \ge 2$.

• CE:
$$r^2 - 1 = 0$$
, that is, $r = \pm 1$, so $a_n^{(h)} = A + B(-1)^n$.

•
$$f(n) = n^2 = n^2 \times 1^n$$
, so $a_n^{(p)} = n(U_2n^2 + U_1n + U_0) \times 1^n = n(U_2n^2 + U_1n + U_0)$.

- Therefore $n(U_2n^2 + U_1n + U_0) = (n-2)(U_2(n-2)^2 + U_1(n-2) + U_0) + n^2$.
- Method of undetermined coefficients
 - Coefficient of n^3 : $U_2 = U_2$ (no information).
 - Coefficient of n^2 : $U_1 = -6U_2 + U_1 + 1$ which gives $U_2 = \frac{1}{6}$.
 - Coefficient of *n*: $U_0 = 12U_2 4U_1 + U_0$ which gives $U_1 = \frac{1}{2}$.
 - Constant term: $0 = -8U_2 + 4U_1 U_0$ which gives $U_0 = \frac{1}{3}$.
- $a_n^{(p)} = \frac{1}{6}n(n^2 + 3n + 2)$, and so $a_n = A + B(-1)^n + \frac{1}{6}n(n^2 + 3n + 2)$.
- The initial conditions $a_0 = 0 = A + B$ and $a_1 = 1 = A B + 1$ give A = B = 0.

• Therefore
$$a_n = \frac{1}{6}n(n^2 + 3n + 2)$$
 for all $n \ge 0$.