Solving Linear Recurrences of Constant Orders

Department of Computer Science and Engineering Indian Institute of Technology Kharagpur

October 27, 2022

- Initial condition: A constant is supplied as a_{0} or a_{1}.
- $a_{n}=c(n) a_{n-1}+f(n)$
- Unwind the recurrence

$$
\begin{aligned}
a_{n} & =c(n) a_{n-1}+f(n) \\
& =c(n)\left(c(n-1) a_{n-2}+f(n-1)\right)+f(n) \\
& =c(n) c(n-1) a_{n-2}+c(n) f(n-1)+f(n) \\
& =c(n) c(n-1)\left(c(n-2) a_{n-3}+f(n-2)\right)+[c(n) f(n-1)+f(n)] \\
& =c(n) c(n-1) c(n-2) a_{n-3}+[c(n) c(n-1) f(n-2)+c(n) f(n-1)+f(n)]
\end{aligned}
$$

- Eventually a_{n} is expressed in terms of the initial condition.

Peg A

Peg B

- Let n be the number of disks initially on Peg A.
- Let t_{n} be the minimum number of disk movements for n disks.
- $t_{1}=1$.
- $t_{n}=2 t_{n-1}+1$ for $n \geqslant 2$.
- Unwind the recurrence:

$$
\begin{aligned}
t_{n} & =2 t_{n-1}+1=2\left(2 t_{n-2}+1\right)+1=2^{2} t_{n-2}+(2+1) \\
& =2^{2}\left(2 t_{n-3}+1\right)+(2+1)=2^{3} t_{n-3}+\left(2^{2}+2+1\right)=\cdots \\
& =2^{n-1} t_{1}+\left(2^{n-2}+\cdots+2^{2}+2+1\right)=2^{n-1}+2^{n-2}+\cdots+2^{2}+2+1=2^{n}-1 .
\end{aligned}
$$

- Let c_{n} be the number of comparisons made for an array of size n.
- We have $c_{1}=0$, and $c_{n}=c_{n-1}+(n-1)$ for $n \geqslant 2$.
- Unwind the recurrence:

$$
\begin{aligned}
c_{n} & =c_{n-1}+(n-1) \\
& =c_{n-2}+(n-2)+(n-1) \\
& =c_{n-3}+(n-3)+(n-2)+(n-1) \\
& \cdots \\
& =c_{1}+(1+2+\cdots+(n-3)+(n-2)+(n-1)) \\
& =\frac{n(n-1)}{2}
\end{aligned}
$$

- The recurrence $a_{n}=c a_{n-1}$ is easy to solve even if c is a non-constant function of n.
- Sometimes, we may convert a first-order recurrence to this form.
- Solve: $a_{0}=1$, and $a_{n}=n a_{n-1}-n(n-2)$ for $n \geqslant 1$.
- We have $a_{n}=n a_{n-1}-n^{2}+2 n$, that is, $a_{n}-n=n a_{n-1}-n(n-1)=n\left(a_{n-1}-(n-1)\right)$.
- Let $b_{n}=a_{n}-n$ for all $n \geqslant 0$.
- We have $b_{0}=1$ and $b_{n}=n b_{n-1}$ for $n \geqslant 1$.
- Unwinding gives $b_{n}=n$! for all $n \geqslant 0$.
- Therefore $a_{n}=n!+n$ for all $n \geqslant 0$.
- Take a constant $k \in \mathbb{N}, k \geqslant 2$.
- General form: $c_{k} a_{n}+c_{k-1} a_{n-1}+\cdots+c_{0} a_{n-k}=f(n)$.
- Here $c_{k}, c_{k-1}, \ldots, c_{0}$ are real-valued constants with $c_{k} \neq 0$ and $c_{0} \neq 0$.
- k is the order of the recurrence.
- You need k initial conditions (like $a_{0}, a_{1}, \ldots, a_{k-1}$).
- Homogeneous recurrences: $f(n)=0$.
- Non-homogeneous recurrences: $f(n) \neq 0$.
- The recurrence can be converted to the standard form

$$
a_{n}=c_{k-1} a_{n-1}+c_{k-2} a_{n-2}+\cdots+c_{0} a_{n-k}+f(n)
$$

- Fibonacci numbers: $F_{0}=0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geqslant 2$.
- $F_{n}=F_{n-1}+F_{n-2}=\left(F_{n-2}+F_{n-3}\right)+F_{n-2}=2 F_{n-2}+F_{n-3}=2\left(F_{n-3}+F_{n-4}\right)+F_{n-3}=$ $3 F_{n-3}+2 F_{n-4}=3\left(F_{n-4}+F_{n-5}\right)+2 F_{n-4}=5 F_{n-4}+3 F_{n-5}=\cdots$.
- We have essentially established that $F_{n}=F_{k+1} F_{n-k}+F_{k} F_{n-k-1}$ for $k=1,2,3, \ldots$
- Put $k=n-1$ to get $F_{n}=F_{n} F_{1}+F_{n-1} F_{0}=F_{n} \times 1+F_{n-1} \times 0=F_{n}$.
- This is true, but useless.
- Generating functions can help.
- We have a standard procedure if
- the coefficients $c_{k}, c_{k-1}, \ldots, c_{0}$ are constant, and
- $f(n)$ is of some specific forms.
- The procedure is the discrete analog of solving differential equations.
- Homogeneous recurrence: $c_{k} a_{n}+c_{k-1} a_{n-1}+\cdots+c_{0} a_{n-k}=0$.
- The solution of $a_{n}=r a_{n-1}$ is of the form $a_{n}=A r^{n}$ for some constant A.
- We have $r \neq 0$. In general, we also have $A \neq 0$.
- Plugging in $a_{n}=A r^{n}$ gives $c_{k} A r^{n}+c_{k-1} A r^{n-1}+\cdots+c_{0} A r^{n-k}=0$.
- Since A and r are non-zero, this gives the characteristic equation

$$
c_{k} r^{k}+c_{k-1} r^{k-1}+\cdots+c_{0}=0
$$

- For the homogeneous recurrence of the standard form $a_{n}=c_{k-1} a_{n-1}+c_{k-2} a_{n-2}+\cdots+c_{0} a_{n-k}$, the characteristic equation is

$$
r^{k}-c_{k-1} r^{k-1}-c_{k-2} r^{k-2}-\cdots-c_{0}=0
$$

- We need to factor the characteristic polynomial to get all its roots r.
- The roots of the characteristic equation are real numbers and/or complex conjugate pairs.
- Assume that the k roots $r_{1}, r_{2}, \ldots, r_{k}$ are distinct from one another.
- The solution for the recurrence is given by

$$
A_{1} r_{1}^{n}+A_{2} r_{2}^{n}+\cdots+A_{k} r_{k}^{n}
$$

for some constants $A_{1}, A_{2}, \ldots, A_{k}$.

- Plug in the k initial values to get a system of linear equations in $A_{1}, A_{2}, \ldots, A_{k}$.
- Solve the system to obtain these coefficients.
- $F_{0}=0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geqslant 2$.
- The characteristic equation is $r^{2}-r-1=0$.
- The roots are $\rho=\frac{1+\sqrt{5}}{2}$ and $\bar{\rho}=\frac{1-\sqrt{5}}{2}$.
- We have $F_{n}=A \rho^{n}+B \bar{\rho}^{n}$ for all $n \geqslant 0$.
- The initial conditions give $A+B=0$ and $A \rho+B \bar{\rho}=1$.
- This linear system has the solution $A=\frac{1}{\sqrt{5}}$ and $B=-\frac{1}{\sqrt{5}}$.
- Therefore for all $n \geqslant 0$, we have

$$
F_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]=\frac{\rho^{n}-\bar{\rho}^{n}}{\rho-\bar{\rho}}
$$

Covering a $2 \times n$ Board by Dominoes

Dominoes

Board to cover

Possibilities

- $d_{1}=1, d_{2}=2, d_{n}=d_{n-1}+d_{n-2}$ for $n \geqslant 3$.
- $d_{n}=F_{n+1}$ for all $n \geqslant 1$.
- $p_{1}=1$ and $p_{2}=2$.
- Take $n \geqslant 3$.
- A palindromic composition of n can be obtained from that of $n-2$ in two ways.
- Add the summand 1 at the two ends.
- Add 1 to the leftmost and the rightmost summands (may be the same).
- $p_{n}=2 p_{n-2}$ for $n \geqslant 3$. This is of order 2 with CE $r^{2}-2=0$, that is, $r= \pm \sqrt{2}$.
- The solution is $p_{n}=A(\sqrt{2})^{n}+B(\sqrt{2})^{n}$.
- $p_{n}=\left(\frac{\sqrt{2}+1}{2 \sqrt{2}}\right)(\sqrt{2})^{n}+\left(\frac{\sqrt{2}-1}{2 \sqrt{2}}\right)(-\sqrt{2})^{n}$ for all $n \geqslant 1$.
- This simplifies to $p_{n}=2^{\lfloor n / 2\rfloor}$ for all $n \geqslant 1$.

Dominoes

Tiling

- Initial conditions: $d_{1}=1, d_{2}=5$ and $d_{3}=11$.
- Recurrence: $d_{n}=d_{n-1}+4 d_{n-2}+2 d_{n-3}$ for $n \geqslant 4$.
- The characteristic equation $r^{3}-r^{2}-4 r-2=0$ has roots $-1,1+\sqrt{3}, 1-\sqrt{3}$.
- The initial conditions give

$$
d_{n}=(-1)^{n}+\frac{1}{\sqrt{3}}(1+\sqrt{3})^{n}-\frac{1}{\sqrt{3}}(1-\sqrt{3})^{n}
$$

for all $n \geqslant 1$.

Complex Roots

- Solve: $a_{0}=1, a_{1}=2, a_{n}=2\left(a_{n-1}-a_{n-2}\right)$ for $n \geqslant 2$.
- The characteristic equation is $r^{2}-2 r+2=0$, that is, $(r-1)^{2}=-1$, that is, $r=1 \pm \mathrm{i}$.
- We have $1+\mathrm{i}=\sqrt{2} e^{\mathrm{i} \pi / 4}$ and $1-\mathrm{i}=\sqrt{2} e^{-\mathrm{i} \pi / 4}$.
- Therefore $a_{n}=A(\sqrt{2})^{n} e^{\mathrm{i} n \pi / 4}+B(\sqrt{2})^{n} e^{-\mathrm{i} n \pi / 4}$.
- The initial conditions give $a_{0}=1=A+B$ and $a_{1}=2=A(1+\mathrm{i})+B(1-\mathrm{i})$.
- Solving gives $A=\frac{1}{2}(1-\mathrm{i})=\frac{1}{\sqrt{2}} e^{-\mathrm{i} \pi / 4}$, and $B=\frac{1}{2}(1+\mathrm{i})=\frac{1}{\sqrt{2}} e^{\mathrm{i} \pi / 4}$.
- Therefore $a_{n}=(\sqrt{2})^{n-1}\left[e^{\mathrm{i}(n-1) \pi / 4}+e^{-\mathrm{i}(n-1) \pi / 4}\right]=(\sqrt{2})^{n+1} \cos [(n-1) \pi / 4]=$ $(\sqrt{2})^{n}[\cos (n \pi / 4)+\sin (n \pi / 4)]$.
- Let r be a root of the characteristic equation of multiplicity m.
- The contribution of r in the solution is

$$
\left(A_{m-1} n^{m-1}+A_{m-2} n^{m-2}+\cdots+A_{1} n+A_{0}\right) r^{n}
$$

where $A_{0}, A_{1}, \ldots, A_{m-1}$ are constants.

- The solutions $n^{i} r^{n}$ are linearly independent for $i=0,1,2, \ldots, m-1$.

Repeated Roots: Example

- Solve: $a_{0}=1, a_{1}=2, a_{2}=7, a_{n}=a_{n-1}+a_{n-2}-a_{n-3}$ for $n \geqslant 3$.
- The characteristic equation is $r^{3}-r^{2}-r+1=0$, that is, $(r-1)^{2}(r+1)=0$.
- The solution is of the form $a_{n}=\left(A_{1} n+A_{0}\right) \times 1^{n}+B \times(-1)^{n}$.
- The initial conditions give $A_{0}+B=1, A_{1}+A_{0}-B=2$, and $2 A_{1}+A_{0}+B=7$.
- The linear system has the solution $A_{1}=3, A_{0}=0$, and $B=1$.
- We therefore have $a_{n}=3 n+(-1)^{n}$ for all $n \geqslant 0$.
- $a_{n}=c_{k-1} a_{n-1}+c_{k-2} a_{n-2}+\cdots+c_{0} a_{n-k}+f(n)$ with $c_{0}, c_{1}, \ldots, c_{k-1}$ constants and $f(n) \neq 0$.
- The recurrence is solvable for $f(n)$ of special forms.
- Procedure
- Consider the homogeneous recurrence $a_{n}=c_{k-1} a_{n-1}+c_{k-2} a_{n-2}+\cdots+c_{0} a_{n-k}$.
- From the characteristic equation, determine the general form of the homogeneous solution $a_{n}^{(h)}$. Do not compute the coefficients in $a_{n}^{(h)}$ now.
- Determine the general form of the particular solution $a_{n}^{(p)}$ from $f(n)$ and the characteristic equation.
- Plug in the particular solution in the nonhomogeneous recurrence: $a_{n}^{(p)}=c_{k-1} a_{n-1}^{(p)}+c_{k-2} a_{n-2}^{(p)}+\cdots+c_{0} a_{n-k}^{(p)}+f(n)$. This gives $a_{n}^{(p)}$ fully.
- The solution to the nonhomogeneous recurrence is $a_{n}=a_{n}^{(h)}+a_{n}^{(p)}$ with $a_{n}^{(p)}$ known.
- Plug in the initial conditions to determine (the coefficients in) $a_{n}^{(h)}$.
- We consider $f(n)=p(n) s^{n}$, where
- $p(n)$ is a non-zero polynomial of degree $t \geqslant 0$, and
- s is a non-zero constant. We can have the invisible $s=1$.
- Let m be the multiplicity of s as a root of the characteristic equation.
- If s is not a root of the characteristic equation, then $m=0$.
- The particular solution is of the form

$$
a_{n}^{(p)}=n^{m}\left(U_{t} n^{t}+U_{t-1} n^{t-1}+\cdots+U_{1} n+U_{0}\right) s^{n}
$$

where $U_{0}, U_{1}, \ldots, U_{t}$ are constants.

- Put this solution in the given recurrence, and equate coefficients of n^{i} from both sides.
- This gives a linear system that determines $U_{0}, U_{1}, \ldots, U_{t}$.
- $t_{1}=1$, and $t_{n}=2 t_{n-1}+1$ for $n \geqslant 2$.
- The characteristic equation is $r-2=0$, that is, $r=2$.
- The homogeneous solution is of the form $a_{n}^{(h)}=A \times 2^{n}$.
- The nonhomogeneous part is 1 , so $p(n)=1$ and $s=1$ (s is not a root of the CE).
- We therefore have $t_{n}^{(p)}=n^{0}(U) 1^{n}=U$.
- Put this in the recurrence to get $U=2 U+1$, that is, $U=-1$, that is, $t_{n}^{(p)}=-1$.
- Therefore $t_{n}=t_{n}^{(h)}+t_{n}^{(p)}=A \times 2^{n}-1$.
- Now use $t_{1}=1$ to get $1=2 A-1$, that is, $A=1$.
- The final solution is $t_{n}=2^{n}-1$ for all $n \geqslant 1$.
- $s_{0}=0, s_{1}=0$, and $s_{n}=s_{n-1}+s_{n-2}+1$ for $n \geqslant 2$.
- CE: $r^{2}-r-1=0$. The roots are $\rho=\frac{1+\sqrt{5}}{2}$ and $\bar{\rho}=\frac{1-\sqrt{5}}{2}$.
- $s_{n}^{(h)}=A \rho^{n}+B \bar{\rho}^{n}$.
- $s_{n}^{(p)}=U$, so $U=U+U+1$, that is, $U=-1$, that is, $s_{n}=A \rho^{n}+B \bar{\rho}^{n}-1$.
- The initial conditions give $s_{0}=0=A+B-1$ and $0=A \rho+B \bar{\rho}-1$.
- Solving gives $A=\frac{1+\sqrt{5}}{2 \sqrt{5}}$ and $B=-\left(\frac{1-\sqrt{5}}{2 \sqrt{5}}\right)$.
- Therefore the solution is

$$
s_{n}=\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{n+1}\right]-1
$$

for all $n \geqslant 0$. Indeed $s_{n}=F_{n+1}-1$.

Nonhomogeneous Recurrence: Example

- Solve: $a_{0}=8, a_{1}=21$, and $a_{n}=a_{n-1}+2 a_{n-2}+2 n(2 n+1) 3^{n-2}$ for $n \geqslant 2$.
- CE: $r^{2}-r-2=(r+1)(r-2)=0$, that is, $r=-1,2$, so $a_{n}^{(h)}=A(-1)^{n}+B 2^{n}$.
- Particular solution: $p(n)=\frac{4}{9} n^{2}+\frac{2}{9} n$ is of degree 2 , and $s=3$ is not a root of the CE), so $a_{n}^{(p)}=\left(U_{2} n^{2}+U_{1} n+U_{0}\right) 3^{n}$.
- Putting this in the recurrence and dividing by 3^{n-2}, we get $9\left(U_{2} n^{2}+U_{1} n+U_{0}\right)=$ $3\left(U_{2}(n-1)^{2}+U_{1}(n-1)+U_{0}\right)+2\left(U_{2}(n-2)^{2}+U_{1}(n-2)+U_{0}\right)+2 n(2 n+1)$.
- Method of undetermined coefficients
- Coefficient of $n^{2}: 9 U_{2}=3 U_{2}+2 U_{2}+4$, that is, $U_{2}=1$.
- Coefficient of $n: 9 U_{1}=-6 U_{2}+3 U_{1}-8 U_{2}+2 U_{1}+2$, that is, $U_{1}=-3$.
- Constant term: $9 U_{0}=3 U_{2}-3 U_{1}+3 U_{0}+8 U_{2}-4 U_{1}+2 U_{0}$, that is, $U_{0}=8$.

Nonhomogeneous Recurrence: Example (Continued)

- $a_{n}^{(p)}=\left(n^{2}-3 n+8\right) 3^{n}$.
- $a_{n}=a_{n}^{(h)}+a_{n}^{(p)}=A(-1)^{n}+B 2^{n}+\left(n^{2}-3 n+8\right) 3^{n}$.
- $a_{0}=8=A+B+8$, that is, $A+B=0$.
- $a_{1}=21=-A+2 B+18$, that is, $-A+2 B=3$.
- Solving this system, we get $A=-1$ and $B=1$.
- Therefore for all $n \geqslant 0$, we have

$$
a_{n}=2^{n}-(-1)^{n}+\left(n^{2}-3 n+8\right) 3^{n}
$$

Example: s is a Root of the Characteristic Equation

- Solve: $a_{0}=0, a_{1}=1$, and $a_{n}=a_{n-2}+n^{2}$ for $n \geqslant 2$.
- CE: $r^{2}-1=0$, that is, $r= \pm 1$, so $a_{n}^{(h)}=A+B(-1)^{n}$.
- $f(n)=n^{2}=n^{2} \times 1^{n}$, so $a_{n}^{(p)}=n\left(U_{2} n^{2}+U_{1} n+U_{0}\right) \times 1^{n}=n\left(U_{2} n^{2}+U_{1} n+U_{0}\right)$.
- Therefore $n\left(U_{2} n^{2}+U_{1} n+U_{0}\right)=(n-2)\left(U_{2}(n-2)^{2}+U_{1}(n-2)+U_{0}\right)+n^{2}$.
- Method of undetermined coefficients
- Coefficient of $n^{3}: U_{2}=U_{2}$ (no information).
- Coefficient of $n^{2}: U_{1}=-6 U_{2}+U_{1}+1$ which gives $U_{2}=\frac{1}{6}$.
- Coefficient of $n: U_{0}=12 U_{2}-4 U_{1}+U_{0}$ which gives $U_{1}=\frac{1}{2}$.
- Constant term: $0=-8 U_{2}+4 U_{1}-U_{0}$ which gives $U_{0}=\frac{1}{3}$.
- $a_{n}^{(p)}=\frac{1}{6} n\left(n^{2}+3 n+2\right)$, and so $a_{n}=A+B(-1)^{n}+\frac{1}{6} n\left(n^{2}+3 n+2\right)$.
- The initial conditions $a_{0}=0=A+B$ and $a_{1}=1=A-B+1$ give $A=B=0$.
- Therefore $a_{n}=\frac{1}{6} n\left(n^{2}+3 n+2\right)$ for all $n \geqslant 0$.

