CS21201 Discrete Structures

Rings and Fields

1. Define two operations on \mathbb{Z} as

$$
\begin{aligned}
a \oplus b & =a+b+u \\
a \odot b & =a+b+v a b
\end{aligned}
$$

where u, v are constant integers. For which values of u and v, is $(\mathbb{Z}, \oplus, \odot)$ a ring?
Solution [Additive axioms] \oplus is clearly commutative. For associativity, we note that $(a \oplus b) \oplus c=(a+b+u) \oplus c=$ $a+b+c+2 u$, whereas $a \oplus(b \oplus c)=a \oplus(b+c+u)=a+b+c+2 u$, that is, $(a \oplus b) \oplus c=a \oplus(b \oplus c)$ irrespective of u. The additive identity is $-u$, because $a \oplus(-u)=a+(-u)+u=a$ and $(-u) \oplus a=(-u)+a+u=a$. Finally, $a+(-2 u-a)+u=(-2 u-a)+a+u=-u$, so $-2 u-a$ is the additive inverse of a. In short, the additive axioms do not impose any constraints on u (and v is not involved in this addition).
[Multiplicative axioms] We have $(a \odot b) \odot c=(a+b+v a b) \odot c=a+b+v a b+c+v(a+b+v a b) c=$ $a+b+c+v(a b+a c+b c+a b c)$, whereas $a \odot(b \odot c)=a \odot(b+c+v b c)=a+(b+c+v b c)+v a(b+c+v b c)=$ $a+b+c+v(a b+a c+b c+a b c)$, so \odot is associative for any value of v. Although not needed in a general ring, this multiplication is commutative and has the identity 0 . Again, no conditions on v (and u) are imposed.
[Distributivity] Because of commutativity, it suffices to look only at $a \odot(b \oplus c)=(a \odot b) \oplus(a \odot c)$, that is, $a \odot(b+c+u)=(a+b+v a b) \oplus(a+c+v a c)$, that is, $a+(b+c+u)+v a(b+c+u)=(a+b+v a b)+(a+$ $c+v a c)+u$, that is, $a+b+c+u+v a b+v a c+u v a=2 a+b+c+u+v a b+v a c$, that is, $u v a=a$. Since this must hold for all integers a, we must have $u v=1$.

The only possibilities are therefore $u=v=1$ and $u=v=-1$.
2. Take $u=v=1$ is Exercise 1 .
(a) Find the units of $(\mathbb{Z}, \oplus, \odot)$. Find their respective inverses.

Solution The multiplicative identity is 0 . So $a \odot b=0$ (with $a \neq-1$) implies $a+b+a b=0$, that is, $b(a+1)=-a$, that is, $b=-\left(\frac{a}{a+1}\right)$. This b is an integer if and only if $a=0$ or $a=-2$. The inverse of 0 is 0 , and of -2 is -2 .
(b) Prove that the set of all odd integers is a subring of this ring. What about the set of all even integers?

Solution It suffices to verify that $a \ominus b$ and $a \odot b$ are odd if a, b are odd. The additive inverse of b is $-2 u-b=-2-b$, which is odd if a is odd. But then, $a \ominus b=a \oplus(-2-b)=a-2-b+1=a-b-1$ is odd if a, b are odd. Also, $a \odot b=a+b+a b$ is odd if a, b are odd.

Even integers do not constitute a subring, because closure of \oplus does not hold.
3. Let \mathbb{Z}_{1} be the ring of Exercise 1 with $u=v=1$, and \mathbb{Z}_{2} the ring of Exercise 1 with $u=v=-1$. Define a ring isomorphism $\mathbb{Z}_{1} \rightarrow \mathbb{Z}_{2}$.

Solution Consider the map $f: \mathbb{Z}_{1} \rightarrow \mathbb{Z}_{2}$ as $f(a)=-a$. Then, $f\left(a \oplus_{1} b\right)=f(a+b+1)=-(a+b+1)$, whereas $f(a) \oplus_{2} f(b)=(-a) \oplus_{2}(-b)=(-a)+(-b)-1=-(a+b+1)$. Moreover, $f\left(a \odot_{1} b\right)=f(a+b+a b)=$ $-(a+b+a b)$, and $f(a) \odot_{2} f(b)=(-a) \odot_{2}(-b)=(-a)+(-b)-(-a)(-b)=-(a+b+a b)$.
4. Let R be a commutative ring with identity, and $R[x]$ the set of univariate polynomials with coefficients from R. Define addition and multiplication of polynomials in the usual way.
(a) Prove that $R[x]$ is a ring.

Solution Straightforward verification.
(b) Prove that $R[x]$ is an integral domain if and only if R is an integral domain.

Solution $[\Rightarrow]$ Take non-zero elements $a, b \in R$. Then a and b are non-zero (constant) polynomials. Since $R[x]$ is an integral domain, $a b$ is not the zero polynomial. But $a b$ is again a constant polynomial. It follows that $a b \neq 0$.
$[\Leftarrow]$ Suppose that there exist $A(x), B(x) \in R[x]$ such that $A(x) B(x)=0, A(x) \neq 0$, and $B(x) \neq 0$. Write $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{d} x^{d}$ with $a_{d} \neq 0$ and $d \geqslant 0$, and $B(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{e} x^{e}$ with $b_{e} \neq 0$ and $e \geqslant 0$. Since $A(x) B(x)=0$, we have $a_{d} b_{e}=0$. This implies that R is not an integral domain.
5. Let K, L be fields, and $f: K \rightarrow L$ a non-zero ring homomorphism.
(a) Prove/disprove: $f\left(1_{K}\right)=1_{L}$.

Solution True. Since f is non-zero, there exists $a \in K$ such that $f(a) \neq 0_{L}$. But then, $f(a)=f\left(a \cdot 1_{K}\right)=f(a) \cdot f\left(1_{K}\right)$. Since $f(a) \neq 0_{L}$, it is a unit, so by cancellation, we have $f\left(1_{K}\right)=1_{L}$.
(b) Prove that f is injective.

Solution Let $f(a)=f(b)$. If $a \neq b$, then $u=a-b$ is non-zero and so a unit of K. But then, we have $1_{L}=f\left(1_{K}\right)=$ $f\left(u u^{-1}\right)=f(u) f\left(u^{-1}\right)=f(a-b) f\left(u^{-1}\right)=(f(a)-f(b)) f\left(u^{-1}\right)=0_{L} \cdot f\left(u^{-1}\right)=0_{L}$. By definition, a field is a non-zero ring. Therefore $0_{L}=1_{L}$ is a contradiction.
6. (a) Prove that $\mathbb{Z}[\sqrt{5}]=\{a+b \sqrt{5} \mid a, b \in \mathbb{Z}\}$ is an integral domain.

Solution Closure under subtraction and multiplication is easy to check. Since \mathbb{R} is commutative, $\mathbb{Z}[\sqrt{5}]$ is so too. Finally, take $a=1$ and $b=0$ in the definition to conclude that $\mathbb{Z}[\sqrt{5}]$ contains the multiplicative identity.
(b) Prove that $\mathbb{Q}[\sqrt{5}]=\{a+b \sqrt{5} \mid a, b \in \mathbb{Q}\}$ is a field.

Solution Easy verification. Particularly, take $a+b \sqrt{5} \neq 0$, and show that

$$
\frac{1}{a+b \sqrt{5}}=\frac{a-b \sqrt{5}}{a^{2}-5 b^{2}}=\left(\frac{a}{a^{2}-5 b^{2}}\right)+\left(\frac{-b}{a^{2}-5 b^{2}}\right) \sqrt{5} .
$$

Since $\sqrt{5}$ is irrational, we cannot have $a^{2}-5 b^{2}=0$ for rational numbers a, b. So every non-zero element of $\mathbb{Q}[\sqrt{5}]$ is a unit.
(c) Argue that $\mathbb{Z}[\sqrt{5}]$ contains infinitely many units.

Solution $(2+\sqrt{5})(-2+\sqrt{5})=1$, so $2+\sqrt{5}$ is a unit, and it is >1. Therefore $(2+\sqrt{5})^{n}$ are units for all $n \in \mathbb{N}$, distinct from one another.

Additional Exercises

7. The set of Gaussian integers is defined as $\mathbb{Z}[\mathbf{i}]=\{a+\mathrm{i} b \mid a, b \in \mathbb{Z}\}$. Prove that $\mathbb{Z}[\mathrm{i}]$ is an integral domain. What are the units in this ring? Also define the set $\mathbb{Q}[\mathrm{i}]=\{a+\mathrm{i} b \mid a, b \in \mathbb{Q}\}$. Prove that $\mathbb{Q}[\mathrm{i}]$ is a field.
8. Prove that $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]=\left\{\left.a+\left(\frac{1+\sqrt{5}}{2}\right) b \right\rvert\, a, b \in \mathbb{Z}\right\}$ is an integral domain. Argue that $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$ contains infinitely many units. Prove that $\mathbb{Q}\left[\frac{1+\sqrt{5}}{2}\right]=\left\{\left.a+\left(\frac{1+\sqrt{5}}{2}\right) b \right\rvert\, a, b \in \mathbb{Q}\right\}$ is a field. Prove/Disprove the following equalities as sets:

$$
\text { (a) } \mathbb{Z}[\sqrt{5}]=\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right], \quad \text { (b) } \quad \mathbb{Q}[\sqrt{5}]=\mathbb{Q}\left[\frac{1+\sqrt{5}}{2}\right]
$$

9. Prove that $\mathbb{Z}[\sqrt{-5}]=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Z}\}$ is an integral domain. Find all the units in this ring. Prove that $\mathbb{Q}[\sqrt{-5}]=\{a+b \sqrt{-5} \mid a, b \in \mathbb{Q}\}$ is a field.
10. Let $n \geqslant 2$, and let $\left(R_{i},+_{i}, \times_{i}\right)$ be rings for $i=1,2,3, \ldots, n$. Define two operations on the Cartesian product $R=R_{1} \times R_{2} \times \cdots \times R_{n}$ as $\left(a_{1}, a_{2}, \ldots, a_{n}\right)+\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\left(a_{1}+{ }_{1} b_{1}, a_{2}+{ }_{2} b_{2}, \ldots, a_{n}+{ }_{n} b_{n}\right)$ and $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \cdot\left(b_{1}, b_{2}, \ldots, b_{n}\right)=\left(a_{1} \times_{1} b_{1}, a_{2} \times_{2} b_{2}, \ldots, a_{n} \times_{n} b_{n}\right)$ (component-wise operations).
(a) Prove that $(R,+, \cdot)$ is a ring.
(b) If each R_{i} is commutative, prove that R is commutative too.
(c) If each R_{i} is with identity, prove that R is with identity too. What are the units of R in this case?
(d) Prove/Disprove: If each R_{i} is an integral domain, then R is also an integral domain.
(e) Prove/Disprove: If each R_{i} is a field, then R is also a field.
11. Let R be the set of all functions $\mathbb{Z} \rightarrow \mathbb{Z}$. For $f, g \in R$, define $(f+g)(n)=f(n)+g(n)$ and $(f g)(n)=f(n) g(n)$ for all $n \in \mathbb{Z}$.
(a) Prove that R is a commutative ring with identity under these two operations.
(b) What are the units of R ?
(c) Is R an integral domain?
12. Let R be the set of all functions $\mathbb{Z} \rightarrow \mathbb{Z}$. For $f, g \in R$, define $(f+g)(n)=f(n)+g(n)$ and $(f g)(n)=f(g(n))$ for all $n \in \mathbb{Z}$. Prove/Disprove: R is a ring under these two operations.
13. Let R be the set of all n-bit words for some $n \in \mathbb{N}$. Which of the following is/are ring(s)?
(a) R under bitwise OR and AND operations.
(b) R under bitwise XOR and AND operations.
14. Let R be an integral domain. A non-zero non-unit $p \in R$ is called prime in R if $p \mid(a b)$ implies $p \mid a$ or $p \mid b$ (for all $a, b \in R$). A non-zero non-unit $p \in R$ is called irreducible if $p=a b$ implies that either a or b is a unit.
(a) What are the primes of \mathbb{Z} ? What are the irreducible elements of \mathbb{Z} ?
(b) Prove that every prime is also irreducible.
(c) Demonstrate by an example that all irreducible elements need not be prime.
15. Let R be a ring. Prove that the following conditions are equivalent.
(1) R is commutative.
(2) $(a+b)^{2}=a^{2}+2 a b+b^{2}$ for all $a, b \in R$.
(3) $(a+b)(a-b)=a^{2}-b^{2}$ for all $a, b \in R$.
16. Let R be a commutative ring with identity.
(a) Let $n \in \mathbb{N}, n \geqslant 2$, be a fixed constant. Prove that the set $R\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ of n-variate polynomials with coefficients from R is a commutative ring with identity.
(b) Prove that the set $R[[x]]$ of all infinite power series expansions with coefficients from R is a commutative ring with identity. What are the units of $R[[x]]$?
17. If R is an integral domain, which of the rings of the previous exercise is/are integral domain(s)?
18. Let R be a commutative ring. An element $a \in R$ is said to be nilpotent if $a^{n}=0$ for some $n \in \mathbb{N}$.
(a) Given an example of a non-zero nilpotent element in a ring.
(b) Prove that if a and b are nilpotent, then so also is $a+b$.
(c) Let R be with identity. Prove that if a is nilpotent and u is a unit, then $a+u$ is a unit.
19. Let R be a commutative ring with identity, and let $a(x)=a_{d} x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0} \in R[x]$.
(a) Prove that $a(x)$ is nilpotent if and only if $a_{0}, a_{1}, a_{2}, \ldots, a_{d}$ are all nilpotent.
(b) Prove that $a(x)$ is a unit in $R[x]$ if and only if a_{0} is a unit in R, and $a_{1}, a_{2}, \ldots, a_{d}$ are nilpotent.
20. The characteristic of a ring R is defined to be the smallest $n \in \mathbb{N}$ for which $1+1+\cdots+1(n$ times $)=0$. In this case, we say $\operatorname{char} R=n$. If no such n exists, we say that char $R=0$.
(a) What are the characteristics of $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_{n}$?
(b) Prove that char $R=\operatorname{char} R[x]$.
(c) Let R be an integral domain of positive characteristic n. Prove that n is a prime.
21. Let R be an integral domain of prime characteristic p, and let $a, b \in R$. Prove that:
(a) The binomial coefficient $\binom{p}{r}$ is divisible by p for $1 \leqslant r \leqslant p-1$.
(b) $(a+b)^{p^{n}}=a^{p^{n}}+b^{p^{n}}$ for all $n \in \mathbb{N}_{0}$.
22. Let R be a ring, and S, T_{1}, T_{2} subrings of R. If $S \subseteq T_{1} \cup T_{2}$, prove that $S \subseteq T_{1}$ or $S \subseteq T_{2}$.
23. Let $f(x), g(x) \in F[x]$ for an infinite field F. If $f(a)=g(a)$ for infinitely many $a \in F$, prove that $f(x)=g(x)$.
24. Let R be a commutative ring with identity. A subset $S \subseteq R$ is called multiplicative if (i) $1 \in S$, and (ii) whenever $s, t \in S$, we also have $s t \in S$. Prove that the following sets are multiplicative.
(a) The set of all units of R.
(b) The set $\left\{1, f, f^{2}, f^{3}, \ldots\right\}$ for a non-nilpotent element f of R.
(c) The set of all elements of R, which are not zero divisors.
(d) The set of all non-zero elements of R if R is an integral domain.
(e) The set of all non-multiples of a prime p for $R=\mathbb{Z}$.
25. Let R be a commutative ring with identity, and S a multiplicative subset of R. Define a relation ρ on $R \times S$ as $\left(r_{1}, s_{1}\right) \rho\left(r_{2}, s_{2}\right)$ if and only if $t\left(r_{1} s_{2}-r_{2} s_{1}\right)=0$ for some $t \in S$.
(a) Prove that ρ is an equivalence relation.
(b) Denote the equivalence class of (r, s) by r / s. Define $\left(r_{1} / s_{1}\right)+\left(r_{2} / s_{2}\right)=\left(r_{1} s_{2}+r_{2} s_{1}\right) /\left(s_{1} s_{2}\right)$, and $\left(r_{1} / s_{1}\right)\left(r_{2} / s_{2}\right)=\left(r_{1} r_{2}\right) /\left(s_{1} s_{2}\right)$. Show that these operations are well-defined, and the set $Q=R / \rho$ of equivalence classes is a commutative ring with identity under these operations. What are the units of Q ?
(c) Prove that the map $\imath: R \rightarrow Q$ taking $r \mapsto(r / 1)$ is a ring homomorphism.
(d) If R is an integral domain and $S=R \backslash\{0\}$, prove that Q is a field. This field is called the field of fractions or the total quotient ring of R.
(e) What are the fields of fractions of \mathbb{Z} and $F[x]$, where F is a field?
26. Let $\mathbb{Z}[\mathrm{i}]=\{a+\mathrm{i} b \mid a, b \in \mathbb{Z}\}$ be the ring of Gaussian integers. Take $a+\mathrm{i} b, c+\mathrm{i} d \in R$ with $c+\mathrm{i} d \neq 0$. Prove that there exist $p+\mathrm{i} q, r+\mathrm{i} s \in R$ such that $a+\mathrm{i} b=(p+\mathrm{i} q)(c+\mathrm{i} d)+(r+\mathrm{i} s)$ with $0 \leqslant|r+\mathrm{i} s| \leqslant \frac{1}{\sqrt{2}}|c+\mathrm{i} d|$.
(Hint: First express $\frac{a+\mathrm{i} b}{c+\mathrm{i} d}=x+\mathrm{i} y$, where x, y are rationals.)
27. (a) Prove that there cannot be any non-zero homomorphism $\mathbb{Z}_{n} \rightarrow \mathbb{Z}$ for any $n \in \mathbb{N}$.
(b) Prove that there exists a non-zero homomorphism $\mathbb{Z}_{m} \rightarrow \mathbb{Z}_{n}$ if and only if $n \mid m$.
(c) Prove that the only non-zero homomorphism of $\mathbb{Z} \rightarrow \mathbb{Z}$ is the identity map.
28. Prove that the map $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathrm{GL}_{2}(\mathbb{R})$ taking (a, b) to $\left(\begin{array}{cc}a & 0 \\ 0 & b\end{array}\right)$ is a homomorphism of rings.
29. (a) Prove that every integral domain of characteristic 0 contains an isomorphic copy of \mathbb{Z}.
(b) Prove that every field of characteristic 0 contains an isomorphic copy of \mathbb{Q}.
30. Find all non-zero homomorphisms of $\mathbb{Z}[i] \rightarrow \mathbb{Z}[i]$.
31. Prove that there cannot exist a non-zero homomorphism $\mathbb{Z}[i] \rightarrow \mathbb{Z}[\sqrt{2}]$.
