
CS21201 Discrete Structures

Tutorial 7

Generating Functions

1. Find the generating function of the sequence 1,2,0,3,4,0,5,6,0,7,8,0, . . . .

Solution Let us decompose the sequence as follows.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .
−3 −6 −9 −12 0 0 −15 . . .

−1 −1 −2 −2 −3 −3 −4 −4 . . .
1 2 0 3 4 0 5 6 0 7 8 0 9 10 0 . . .

Therefore the generating function of the given sequence is

(

1+2x+3x2 +4x3 + · · ·
)

−3x2
(

1+2x3 +3x6 +4x9 + · · ·
)

− (x3 + x4)(1+2x3 +3x6 +4x9 + · · ·)

=
1

(1− x)2
− 3x2

(1− x3)2
− x3(1+ x)

(1− x3)2

=
1+2x+ x3

(1− x3)2
.

2. Let A(x) be the generating function of the sequence a0,a1,a2, . . . . Express the generating function of the

sequence a0 +a1,a2 +a3,a4 +a5,a6 +a7, . . . in terms of A( ).

Solution The generating function of the given sequence is

(a0 +a1)+(a2 +a3)x+(a4 +a5)x
2 +(a6 +a7)x

3 + · · ·
=

(

a0 +a2x+a4x2 +a6x3 + · · ·
)

+
(

a1 +a3x+a5x2 +a7x3 + · · ·
)

=

(

A(
√

x)+A(−√
x)

2

)

+

(

A(
√

x)−A(−√
x)

2
√

x

)

.

3. Let Fn, n > 0, denote the Fibonacci numbers. Prove that ∑
n∈N0

Fn

2n
= 2.

Solution The generating function of the Fibonacci sequence is

∑
n∈N0

Fnxn =
x

1− x− x2
=

x

(1−ρx)(1− ρ̄x)
=

A

1−ρx
+

B

1− ρ̄x
,

where ρ =
1+

√
5

2
= 1.6180339887 . . . is the golden ratio, ρ̄ =

1−
√

5

2
−0.6180339887 · · · is the conjugate of

the golden ratio, and A,B are constant real numbers. Since |ρ/2| and |ρ̄/2| are less than 1, the power series

converge for x =
1

2
, and we get

∑
n∈N0

Fn

2n
=

1
2

1− 1
2
− ( 1

2
)2

= 2.

4. Let A(x) be the EGF of the sequence a0,a1,a2, . . . . Express the EGF of the sequence a1 −a0,a2 −a1,a3 −
a2, . . . in terms of A( ).

Solution The desired EGF is

(a1 −a0)+(a2 −a1)x+(a3 −a2)
x2

2!
+(a4 −a3)

x3

3!
+ · · ·

=
(

a1 +a2x+a3
x2

2!
+a4

x3

3!
+ · · ·

)

−
(

a0 +a1x+a2
x2

2!
+a3

x3

3!
+ · · ·

)

= A′(x)−A(x).
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5. Let A be a (real-valued) discrete random variable, and n ∈N0. The n-th moment of A (about zero) is defined

as µn = E[An]. The exponential generating function of the sequence µ0,µ1,µ2,µ3, . . . is called the moment

generating function MA(x) of A. Prove that MA(x) = E[exA] (provided that this expectation exists).

Solution Let the space for A be ai, i ∈ I with Pr[A = ai] = pi for all i ∈ I. We have

µn = E[An] = ∑
i∈I

pia
n
i .

Then, the EGF of the moments is

∑
n>0

µn

xn

n!
= ∑

n>0

(

∑
i∈I

pia
n
i

)

xn

n!
= ∑

i∈I

pi

(

∑
n>0

an
i

xn

n!

)

= ∑
i∈I

pie
xai = E(exA).

6. Let an, n > 0, be the sequence satisfying

a0 = 1,

an = 2+2a0 +2a1 +2a2 + · · ·+2an−2 +an−1 for n > 1.

Deduce that the generating function of this sequence is
1+ x

1−2x− x2
. Solve for an.

Solution The (ordinary) generating function of the sequence is

A(x) = a0 +a1x+a2x2 +a3x3 + · · ·+anxn + · · ·
= 1+(2+a0)x+(2+2a0 +a1)x

2 +(2+2a0 +2a1 +a2)x
3 + · · ·+

(2+2a0 +2a1 +2a2 + · · ·+2an−2 +an−1)x
n + · · ·

= 1+2x
(

1+ x+ x2 + x3 + · · ·+ xn−1 + · · ·
)

+2x2
(

a0 +(a0 +a1)x+(a0 +a1 +a2)x
2 + · · ·

)

+

x
(

a0 +a1x+a2x2 + · · ·+an−1xn−1 + · · ·
)

= 1+
2x

1− x
+2x2

(

A(x)

1− x

)

+ xA(x).

It therefore follows that

(

1− 2x2

1− x
− x

)

A(x) = 1+
2x

1− x
,

that is,

(1−2x− x2)A(x) = 1+ x,

that is,

A(x) =
1+ x

1−2x− x2
.

Now, use the fact that 1−2x− x2 =

(

1−
(

1+
√

2
)

x

)(

1−
(

1−
√

2
)

x

)

.

7. The generating function A(x) of a sequence a0,a1,a2,a3, . . . satisfies A′(x) = 1+A(x). Prove that A(x) =
(a0 +1)ex −1.

Solution We have a1 + 2a2x+ 3a3x2 + 4a4x3 + · · · = 1+ (a0 + a1x+ a2x2 + a3x3 + · · ·). Equating the coefficients of

x0,x1,x2,x3, . . . from the two sides gives a1 = a0 + 1, 2a2 = a1, that is, a2 = (a0 + 1)/2!, 3a3 = a2, that is,

a3 = (a0 +1)/3!, and so on.

8. A test has four sections. Section A contains many questions of 2 marks each. Section B has many questions

of 5 marks each. Section C has a single question of 4 marks. Section D has a single question of 1 mark.
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Assume that the questions in Sections A, B and D are of objective numerical type. You either get full marks

or zero. The Section C question is essay-type, and you can get an integer mark in the range [0,4]. In how

many ways can you get a total of n marks?

Solution The relevant generating function is

(1+ x2 + x4 + x6 + · · ·)(1+ x5 + x10 + x15 + · · ·)(1+ x+ x2 + x3 + x4)(1+ x)

=

(

1

1− x2

)(

1

1− x5

)(

1− x5

1− x

)

(1+ x)

=
1

(1− x)2

= 1+2x+3x2 +4x3 + · · ·+(n+1)xn + · · · .

The desired answer is therefore n+1.

9. (a) For n ∈ N, denote by σ(n) the sum of all positive integral divisors of n. We also take σ(0) = 0. Find

the generating function of the sequence σ(0),σ(1),σ(2), . . . ,σ(n), . . . .

Solution ∑
n>1

(nxn +nx2n +nx3n + · · ·) = ∑
n>1

nxn

1− xn
.

(b) If u,v ∈ N are coprime, prove that σ(uv) = σ(u)σ(v). Hence deduce a closed-form expression for

σ(n) with n having the prime factorization n = p
e1

1 p
e2

2 · · · p
et
t .

Solution We have σ(pe) = 1+ p+ p2 + · · ·+ pe =
pe+1 −1

p−1
. By the multiplicative property, we therefore have

σ(n) =
t

∏
i=1

(

p
ei+1
i −1

pi −1

)

.

10. Using generating functions, solve the following mutually defined recurrences.

a0 = 1,

a1 = 2,

b0 = 3,

an = an−1 +bn for n > 1,

bn = bn−1 +an−2 for n > 2.

Solution We have

A(x) = a0 + ∑
n>1

anxn = 1+ ∑
n>1

(an−1 +bn)x
n = 1+ xA(x)+(B(x)−b0) = xA(x)+B(x)−2,

that is,

(1− x)A(x)−B(x) =−2.

We have b1 = a1 −a0 = 1, and so

B(x) = b0 +b1x+ ∑
n>2

bnxn

= 3+ x+ ∑
n>2

(bn−1 +an−2)x
n

= 3+ x+ x(B(x)−b0)+ x2A(x)

= 3−2x+ xB(x)+ x2A(x),
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that is,

−x2A(x)+(1− x)B(x) = 3−2x.

Solve for A(x) and B(x) from these two linear equations.

(

(1− x)2 − x2
)

A(x) =−2(1− x)+(3−2x),

that is, A(x) =
1

1−2x
. Consequently, B(x) = (1− x)A(x)+ 2 =

1− x

1−2x
+ 2 =

1/2

1−2x
+ 5/2. It follows that

an = 2n for all n > 0, whereas bn =

{

3 if n = 0,

2n−1 if n > 1.

11. Let the two-variable sequence am,n be recursively defined as follows.

am,n =

{

1 if m = 0 or n = 0,

am−1,n +am,n−1 if m > 1 and n > 1.

Find the generating function A(x,y) = ∑
m,n>0

am,nxmyn. From this, derive a closed-form formula for am,n.

Solution We have

A(x,y) = ∑
m,n>0

am,nxmyn

= 1+ ∑
m>1

xm + ∑
n>1

yn + ∑
m,n>1

(am−1,n +am,n−1)x
myn

= 1+
x

1− x
+

y

1− y
+ ∑

m,n>1

am−1,nxmyn + ∑
m,n>1

am,n−1xmyn.

Replacing m−1 by m in the first sum gives

∑
m,n>1

am−1,nxmyn = x ∑
m>0
n>1

am,nxmyn = x





∑
m>0
n>0

am,nxmyn






− x

[

∑
m>0

xm

]

= xA(x,y)− x

1− x
.

Likewise, the second sum is yA(x,y)− y

1− y
. Using these expressions gives

A(x,y) =
1

1− x− y
= 1+(x+ y)+(x+ y)2 +(x+ y)3 + · · ·+(x+ y)m+n + · · · .

This gives am,n =

(

m+n

m

)

=

(

m+n

n

)

.

Additional Exercises

12. Find the generating functions of the following sequences.

(a) 1,0,0,1,0,0,1,0,0, . . .
(b) 1,1,0,1,1,0,1,1,0, . . .
(c) 1,3,5,7,9,11,13, . . .
(d) 2,4,8,14,22,32,44, . . .
(e) 1,0,0,2,0,0,3,0,0,4,0,0, . . .
(f) 1,2,0,3,4,0,5,6,0,7,8,0, . . .
(g) 1/1,1/2,1/3,1/4,1/5, . . .
(h) H0,H1,H2,H3, . . . (where Hn is the n-th harmonic number)

13. Let A(x) be the generating function for the sequence a0,a1,a2, . . . . Express the generating functions of the

following sequences in terms of A(x).
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(a) a0,2a1,3a2,4a3,5a4, . . .
(b) a0,a1 −a0,a2 −a1,a3 −a2, . . .
(c) a0,a0 −a1,a0 −a1 +a2,a0 −a1 +a2 −a3, . . .
(d) a0,a1,a2 −a0,a3 −a1,a4 −a2 +a0,a5 −a3 +a1,a6 −a4 +a2 −a0,a7 −a5 +a3 −a1, . . .
(e) a0 +a1,a1 +a2,a2 +a3,a3 +a4, . . .
(f) a0 +a1,a2 +a3,a4 +a5,a6 +a7, . . .

14. Let a0,a1,a2,a3, . . . ,an, . . . be the sequence generated by ∑
r∈N

xr

1− xr
. Denote by pn the parity of an, that is,

pn = an (mod 2), that is, pn =

{

0 if an is even,

1 if an is odd.
Determine all n ∈ N, for which pn = 1. Justify.

15. Let an =
∞

∑
i=n

2i

i!
for all integers n > 0.

(a) Find a closed-form expression for the (ordinary) generating function A(x) = a0 +a1x+a2x2 +a3x3 +
· · ·+anxn + · · · of the sequence a0,a1,a2,a3, . . . ,an, . . . .

(b) Use the expression for A(x) in Part (a) to prove that
∞

∑
n=0

an = 3e2.

16. Let m > 1 be an integer constant. Let b
(m)
n denote the number of ordered partitions (that is, compositions) of

the integer n > 0 such that no summand is larger than m.

(a) Prove that the (ordinary) generating function of b
(m)
n is

B(m)(x) =
1− x

1−2x+ xm+1
.

(b) From the formula of Part (a), deduce that b
(2)
n = Fn+1, where F0,F1,F2, . . . is the sequence of Fibonacci

numbers.

17. Let ln be the number of lines printed by the call f (n) for some integer n > 0.

void f ( int n )

{

int i, j;

printf("Hi\n");

if (n == 0) return;

for (i=0; i<=n-1; ++i)

for (j=0; j<=i; ++j)

f(j);

}

(a) Let L(x) = l0+ l1x+ l2x2+ · · ·+ lnxn+ · · · be the generating function of the sequence l0, l1, l2, . . . . Prove

that L(x) =
1− x

1−3x+ x2
.

(b) Derive an explicit formula for ln from the generating function L(x).

18. Find the number of solutions of x1 + x2 + x3 + x4 = n with integer-valued variables satisfying x1 > −1,

x2 >−2, x3 > 3, and x4 > 4.

19. How many bit strings of length n are there in which 1’s always occur in contiguous pairs? You should

consider strings of the form 0011011110, but not of the form 0110111110, because the last 1 is not paired.

20. Use generating functions to prove that every positive integer has a unique binary representation (without

leading zero bits).

21. Let A(x) be the generating function of the sequence a0,a1,a2,a3, . . . of real numbers. Prove that 1/A(x) is

the generating function of a sequence if and only if a0 6= 0.

22. (a) Find the probability generating function of the binomial distribution Pr[Bn,p = r] =

(

n

r

)

pr(1− p)n−r

for r = 0,1,2, . . . ,n. Hence deduce the expectation E[Bn,p].
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(b) Find the probability generating function of the uniform distribution Pr[Ua,b = r] =
1

b−a+1
for

r = a,a+1,a+2, . . . ,b (where a,b ∈ Z with a 6 b). Hence deduce the expectation E[Ua,b].

23. Let A(x) be the exponential generating function of a sequence a0,a1,a2, . . . . Express the exponential

generating functions of the following sequences in terms of A(x).

(a) a0,2a1,3a2,4a3,5a4, . . .
(b) 0,a0,a1,a2,a3,a4, . . .
(c) a1,a2,a3,a4,a5, . . .
(d) a0,a1 −a0,a2 −a1,a3 −a2, . . .

24. Let A(x) and B(x) be the exponential generating functions of the two sequences a0,a1,a2,a3, . . . and

b0,b1,b2,b3, . . . . Of what sequence is A(x)B(x) the EGF?

25. Prove the following identities involving the Stirling numbers S(n,k) of the second kind. Take S(0,0) = 1,

and S(n,k) = 0 for n < k.

(a) ∑
n∈N0

S(n,k)xn =
k

∏
r=1

x

1− rx
.

(b) ∑
n∈N0

S(n,k)
xn

n!
=

(ex −1)k

k!
.

26. Deduce that the exponential generating function of the Bell numbers Bn, n ∈ N0, is eex−1.

27. Find the moment generating functions of the following random variables.

(a) Binomial distribution: Pr[Bn,p = r] =

(

n

r

)

pr(1− p)r for r = 0,1,2, . . . ,n.

(b) Geometric distribution: Pr[Gp = r] = (1− p)r−1 p for r ∈ N.

(c) The discrete uniform distribution: Pr[Ua,b = r] =
1

b−a+1
for r = a,a+1,a+2, . . . ,b.

(d) The continuous uniform distribution: Pr[Ca,b = r] =
1

b−a
for r ∈ [a,b].

(e) Poisson distribution: Pr[Pλ = r] = e−λ λ r

r!
for r ∈ N0.

28. Generating functions with multiple variables are sometimes used. Suppose that r elements are chosen from

{1,2,3, . . . ,n} such that the sum of the chosen elements is s. We want to count how many such collections

are possible. Argue that this count is the coefficient of xrys of (1+ xy)(1+ xy2)(1+ xy3) · · ·(1+ xyn). Find

the two-variable generating function of these counts if the r elements are chosen from {1,2,3, . . . ,n} with

repetitions allowed.

29. Let an, n > 0, be the sequence satisfying

a0 = 0,

a1 = 1,

an = an−1 +
n−2

∑
k=1

akan−1−k for n > 2.

Prove that the generating function for this sequence is
1− x−

√
1−2x−3x2

2x
. Solve for an.

30. Solve the following recurrence relation using generating functions: a0 = 1, a1 = 2, a2 = 3, an = 4an−1 −
5an−2 +2an−3 +1 for n > 3.
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