Generating Functions

1. Find the generating function of the sequence $1,2,0,3,4,0,5,6,0,7,8,0, \ldots$.

Solution Let us decompose the sequence as follows.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		-3			-6			-9			-12	0	0	-15
		-1	-1		-2	-2		-3	-3		-4	-4		\ldots
1	2	0	3	4	0	5	6	0	7	8	0	9	10	0
\ldots														

Therefore the generating function of the given sequence is

$$
\begin{aligned}
& \left(1+2 x+3 x^{2}+4 x^{3}+\cdots\right)-3 x^{2}\left(1+2 x^{3}+3 x^{6}+4 x^{9}+\cdots\right)-\left(x^{3}+x^{4}\right)\left(1+2 x^{3}+3 x^{6}+4 x^{9}+\cdots\right) \\
= & \frac{1}{(1-x)^{2}}-\frac{3 x^{2}}{\left(1-x^{3}\right)^{2}}-\frac{x^{3}(1+x)}{\left(1-x^{3}\right)^{2}} \\
= & \frac{1+2 x+x^{3}}{\left(1-x^{3}\right)^{2}} .
\end{aligned}
$$

2. Let $A(x)$ be the generating function of the sequence $a_{0}, a_{1}, a_{2}, \ldots$. Express the generating function of the sequence $a_{0}+a_{1}, a_{2}+a_{3}, a_{4}+a_{5}, a_{6}+a_{7}, \ldots$ in terms of $A()$.

Solution The generating function of the given sequence is

$$
\begin{aligned}
& \left(a_{0}+a_{1}\right)+\left(a_{2}+a_{3}\right) x+\left(a_{4}+a_{5}\right) x^{2}+\left(a_{6}+a_{7}\right) x^{3}+\cdots \\
= & \left(a_{0}+a_{2} x+a_{4} x^{2}+a_{6} x^{3}+\cdots\right)+\left(a_{1}+a_{3} x+a_{5} x^{2}+a_{7} x^{3}+\cdots\right) \\
= & \left(\frac{A(\sqrt{x})+A(-\sqrt{x})}{2}\right)+\left(\frac{A(\sqrt{x})-A(-\sqrt{x})}{2 \sqrt{x}}\right) .
\end{aligned}
$$

3. Let $F_{n}, n \geqslant 0$, denote the Fibonacci numbers. Prove that $\sum_{n \in \mathbb{N}_{0}} \frac{F_{n}}{2^{n}}=2$.

Solution The generating function of the Fibonacci sequence is

$$
\sum_{n \in \mathbb{N}_{0}} F_{n} x^{n}=\frac{x}{1-x-x^{2}}=\frac{x}{(1-\rho x)(1-\bar{\rho} x)}=\frac{A}{1-\rho x}+\frac{B}{1-\bar{\rho} x},
$$

where $\rho=\frac{1+\sqrt{5}}{2}=1.6180339887 \ldots$ is the golden ratio, $\bar{\rho}=\frac{1-\sqrt{5}}{2}-0.6180339887 \cdots$ is the conjugate of the golden ratio, and A, B are constant real numbers. Since $|\rho / 2|$ and $|\bar{\rho} / 2|$ are less than 1 , the power series converge for $x=\frac{1}{2}$, and we get

$$
\sum_{n \in \mathbb{N}_{0}} \frac{F_{n}}{2^{n}}=\frac{\frac{1}{2}}{1-\frac{1}{2}-\left(\frac{1}{2}\right)^{2}}=2 .
$$

4. Let $A(x)$ be the EGF of the sequence $a_{0}, a_{1}, a_{2}, \ldots$. Express the EGF of the sequence $a_{1}-a_{0}, a_{2}-a_{1}, a_{3}-$ a_{2}, \ldots in terms of $A()$.

Solution The desired EGF is

$$
\begin{aligned}
& \left(a_{1}-a_{0}\right)+\left(a_{2}-a_{1}\right) x+\left(a_{3}-a_{2}\right) \frac{x^{2}}{2!}+\left(a_{4}-a_{3}\right) \frac{x^{3}}{3!}+\cdots \\
= & \left(a_{1}+a_{2} x+a_{3} \frac{x^{2}}{2!}+a_{4} \frac{x^{3}}{3!}+\cdots\right)-\left(a_{0}+a_{1} x+a_{2} \frac{x^{2}}{2!}+a_{3} \frac{x^{3}}{3!}+\cdots\right) \\
= & A^{\prime}(x)-A(x) .
\end{aligned}
$$

5. Let A be a (real-valued) discrete random variable, and $n \in \mathbb{N}_{0}$. The n-th moment of A (about zero) is defined as $\mu_{n}=\mathrm{E}\left[A^{n}\right]$. The exponential generating function of the sequence $\mu_{0}, \mu_{1}, \mu_{2}, \mu_{3}, \ldots$ is called the moment generating function $M_{A}(x)$ of A. Prove that $M_{A}(x)=\mathrm{E}\left[e^{x A}\right]$ (provided that this expectation exists).

Solution Let the space for A be $a_{i}, i \in I$ with $\operatorname{Pr}\left[A=a_{i}\right]=p_{i}$ for all $i \in I$. We have

$$
\mu_{n}=\mathrm{E}\left[A^{n}\right]=\sum_{i \in I} p_{i} a_{i}^{n}
$$

Then, the EGF of the moments is

$$
\sum_{n \geqslant 0} \mu_{n} \frac{x^{n}}{n!}=\sum_{n \geqslant 0}\left(\sum_{i \in I} p_{i} a_{i}^{n}\right) \frac{x^{n}}{n!}=\sum_{i \in I} p_{i}\left(\sum_{n \geqslant 0} a_{i}^{n} \frac{x^{n}}{n!}\right)=\sum_{i \in I} p_{i} e^{x a_{i}}=\mathrm{E}\left(e^{x A}\right) .
$$

6. Let $a_{n}, n \geqslant 0$, be the sequence satisfying

$$
\begin{aligned}
& a_{0}=1 \\
& a_{n}=2+2 a_{0}+2 a_{1}+2 a_{2}+\cdots+2 a_{n-2}+a_{n-1} \text { for } n \geqslant 1
\end{aligned}
$$

Deduce that the generating function of this sequence is $\frac{1+x}{1-2 x-x^{2}}$. Solve for a_{n}.
Solution The (ordinary) generating function of the sequence is

$$
\begin{aligned}
A(x)= & a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}+\cdots \\
= & 1+\left(2+a_{0}\right) x+\left(2+2 a_{0}+a_{1}\right) x^{2}+\left(2+2 a_{0}+2 a_{1}+a_{2}\right) x^{3}+\cdots+ \\
& \left(2+2 a_{0}+2 a_{1}+2 a_{2}+\cdots+2 a_{n-2}+a_{n-1}\right) x^{n}+\cdots \\
= & 1+2 x\left(1+x+x^{2}+x^{3}+\cdots+x^{n-1}+\cdots\right)+2 x^{2}\left(a_{0}+\left(a_{0}+a_{1}\right) x+\left(a_{0}+a_{1}+a_{2}\right) x^{2}+\cdots\right)+ \\
& x\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n-1} x^{n-1}+\cdots\right) \\
= & 1+\frac{2 x}{1-x}+2 x^{2}\left(\frac{A(x)}{1-x}\right)+x A(x) .
\end{aligned}
$$

It therefore follows that

$$
\left(1-\frac{2 x^{2}}{1-x}-x\right) A(x)=1+\frac{2 x}{1-x},
$$

that is,

$$
\left(1-2 x-x^{2}\right) A(x)=1+x
$$

that is,

$$
A(x)=\frac{1+x}{1-2 x-x^{2}}
$$

Now, use the fact that $1-2 x-x^{2}=(1-(1+\sqrt{2}) x)(1-(1-\sqrt{2}) x)$.
7. The generating function $A(x)$ of a sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$ satisfies $A^{\prime}(x)=1+A(x)$. Prove that $A(x)=$ $\left(a_{0}+1\right) e^{x}-1$.

Solution We have $a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+\cdots=1+\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots\right)$. Equating the coefficients of $x^{0}, x^{1}, x^{2}, x^{3}, \ldots$ from the two sides gives $a_{1}=a_{0}+1,2 a_{2}=a_{1}$, that is, $a_{2}=\left(a_{0}+1\right) / 2!, 3 a_{3}=a_{2}$, that is, $a_{3}=\left(a_{0}+1\right) / 3$!, and so on.
8. A test has four sections. Section A contains many questions of 2 marks each. Section B has many questions of 5 marks each. Section C has a single question of 4 marks. Section D has a single question of 1 mark.

Assume that the questions in Sections A, B and D are of objective numerical type. You either get full marks or zero. The Section C question is essay-type, and you can get an integer mark in the range [0,4]. In how many ways can you get a total of n marks?

Solution The relevant generating function is

$$
\begin{aligned}
& \left(1+x^{2}+x^{4}+x^{6}+\cdots\right)\left(1+x^{5}+x^{10}+x^{15}+\cdots\right)\left(1+x+x^{2}+x^{3}+x^{4}\right)(1+x) \\
= & \left(\frac{1}{1-x^{2}}\right)\left(\frac{1}{1-x^{5}}\right)\left(\frac{1-x^{5}}{1-x}\right)(1+x) \\
= & \frac{1}{(1-x)^{2}} \\
= & 1+2 x+3 x^{2}+4 x^{3}+\cdots+(n+1) x^{n}+\cdots .
\end{aligned}
$$

The desired answer is therefore $n+1$.
9. (a) For $n \in \mathbb{N}$, denote by $\sigma(n)$ the sum of all positive integral divisors of n. We also take $\sigma(0)=0$. Find the generating function of the sequence $\sigma(0), \sigma(1), \sigma(2), \ldots, \sigma(n), \ldots$

Solution $\sum_{n \geqslant 1}\left(n x^{n}+n x^{2 n}+n x^{3 n}+\cdots\right)=\sum_{n \geqslant 1} \frac{n x^{n}}{1-x^{n}}$.
(b) If $u, v \in \mathbb{N}$ are coprime, prove that $\sigma(u v)=\sigma(u) \sigma(v)$. Hence deduce a closed-form expression for $\sigma(n)$ with n having the prime factorization $n=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{t}^{e_{t}}$.

Solution We have $\sigma\left(p^{e}\right)=1+p+p^{2}+\cdots+p^{e}=\frac{p^{e+1}-1}{p-1}$. By the multiplicative property, we therefore have

$$
\sigma(n)=\prod_{i=1}^{t}\left(\frac{p_{i}^{e_{i}+1}-1}{p_{i}-1}\right)
$$

10. Using generating functions, solve the following mutually defined recurrences.

$$
\begin{aligned}
& a_{0}=1 \\
& a_{1}=2 \\
& b_{0}=3, \\
& a_{n}=a_{n-1}+b_{n} \text { for } n \geqslant 1, \\
& b_{n}=b_{n-1}+a_{n-2} \text { for } n \geqslant 2 .
\end{aligned}
$$

Solution We have

$$
A(x)=a_{0}+\sum_{n \geqslant 1} a_{n} x^{n}=1+\sum_{n \geqslant 1}\left(a_{n-1}+b_{n}\right) x^{n}=1+x A(x)+\left(B(x)-b_{0}\right)=x A(x)+B(x)-2,
$$

that is,

$$
(1-x) A(x)-B(x)=-2
$$

We have $b_{1}=a_{1}-a_{0}=1$, and so

$$
\begin{aligned}
B(x) & =b_{0}+b_{1} x+\sum_{n \geqslant 2} b_{n} x^{n} \\
& =3+x+\sum_{n \geqslant 2}\left(b_{n-1}+a_{n-2}\right) x^{n} \\
& =3+x+x\left(B(x)-b_{0}\right)+x^{2} A(x) \\
& =3-2 x+x B(x)+x^{2} A(x),
\end{aligned}
$$

that is,

$$
-x^{2} A(x)+(1-x) B(x)=3-2 x .
$$

Solve for $A(x)$ and $B(x)$ from these two linear equations.

$$
\left((1-x)^{2}-x^{2}\right) A(x)=-2(1-x)+(3-2 x)
$$

that is, $A(x)=\frac{1}{1-2 x}$. Consequently, $B(x)=(1-x) A(x)+2=\frac{1-x}{1-2 x}+2=\frac{1 / 2}{1-2 x}+5 / 2$. It follows that $a_{n}=2^{n}$ for all $n \geqslant 0$, whereas $b_{n}= \begin{cases}3 & \text { if } n=0, \\ 2^{n-1} & \text { if } n \geqslant 1 .\end{cases}$
11. Let the two-variable sequence $a_{m, n}$ be recursively defined as follows.

$$
a_{m, n}= \begin{cases}1 & \text { if } m=0 \text { or } n=0 \\ a_{m-1, n}+a_{m, n-1} & \text { if } m \geqslant 1 \text { and } n \geqslant 1\end{cases}
$$

Find the generating function $A(x, y)=\sum_{m, n \geqslant 0} a_{m, n} x^{m} y^{n}$. From this, derive a closed-form formula for $a_{m, n}$.
Solution We have

$$
\begin{aligned}
A(x, y) & =\sum_{m, n \geqslant 0} a_{m, n} x^{m} y^{n} \\
& =1+\sum_{m \geqslant 1} x^{m}+\sum_{n \geqslant 1} y^{n}+\sum_{m, n \geqslant 1}\left(a_{m-1, n}+a_{m, n-1}\right) x^{m} y^{n} \\
& =1+\frac{x}{1-x}+\frac{y}{1-y}+\sum_{m, n \geqslant 1} a_{m-1, n} x^{m} y^{n}+\sum_{m, n \geqslant 1} a_{m, n-1} x^{m} y^{n} .
\end{aligned}
$$

Replacing $m-1$ by m in the first sum gives

$$
\sum_{m, n \geqslant 1} a_{m-1, n} x^{m} y^{n}=x \sum_{\substack{m \geqslant 0 \\ n \geqslant 1}} a_{m, n} x^{m} y^{n}=x\left[\sum_{\substack{m \geqslant 0 \\ n \geqslant 0}} a_{m, n} x^{m} y^{n}\right]-x\left[\sum_{m \geqslant 0} x^{m}\right]=x A(x, y)-\frac{x}{1-x} .
$$

Likewise, the second sum is $y A(x, y)-\frac{y}{1-y}$. Using these expressions gives

$$
A(x, y)=\frac{1}{1-x-y}=1+(x+y)+(x+y)^{2}+(x+y)^{3}+\cdots+(x+y)^{m+n}+\cdots
$$

This gives $a_{m, n}=\binom{m+n}{m}=\binom{m+n}{n}$.

Additional Exercises

12. Find the generating functions of the following sequences.
(a) $1,0,0,1,0,0,1,0,0, \ldots$
(b) $1,1,0,1,1,0,1,1,0, \ldots$
(c) $1,3,5,7,9,11,13, \ldots$
(d) $2,4,8,14,22,32,44, \ldots$
(e) $1,0,0,2,0,0,3,0,0,4,0,0, \ldots$
(f) $1,2,0,3,4,0,5,6,0,7,8,0, \ldots$
(g) $1 / 1,1 / 2,1 / 3,1 / 4,1 / 5, \ldots$
(h) $H_{0}, H_{1}, H_{2}, H_{3}, \ldots$ (where H_{n} is the n-th harmonic number)
13. Let $A(x)$ be the generating function for the sequence $a_{0}, a_{1}, a_{2}, \ldots$. Express the generating functions of the following sequences in terms of $A(x)$.
(a) $a_{0}, 2 a_{1}, 3 a_{2}, 4 a_{3}, 5 a_{4}, \ldots$
(b) $a_{0}, a_{1}-a_{0}, a_{2}-a_{1}, a_{3}-a_{2}, \ldots$
(c) $a_{0}, a_{0}-a_{1}, a_{0}-a_{1}+a_{2}, a_{0}-a_{1}+a_{2}-a_{3}, \ldots$
(d) $a_{0}, a_{1}, a_{2}-a_{0}, a_{3}-a_{1}, a_{4}-a_{2}+a_{0}, a_{5}-a_{3}+a_{1}, a_{6}-a_{4}+a_{2}-a_{0}, a_{7}-a_{5}+a_{3}-a_{1}, \ldots$
(e) $a_{0}+a_{1}, a_{1}+a_{2}, a_{2}+a_{3}, a_{3}+a_{4}, \ldots$
(f) $a_{0}+a_{1}, a_{2}+a_{3}, a_{4}+a_{5}, a_{6}+a_{7}, \ldots$
14. Let $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$ be the sequence generated by $\sum_{r \in \mathbb{N}} \frac{x^{r}}{1-x^{r}}$. Denote by p_{n} the parity of a_{n}, that is, $p_{n}=a_{n}(\bmod 2)$, that is, $p_{n}=\left\{\begin{array}{ll}0 & \text { if } a_{n} \text { is even, } \\ 1 & \text { if } a_{n} \text { is odd. }\end{array}\right.$ Determine all $n \in \mathbb{N}$, for which $p_{n}=1$. Justify.
15. Let $a_{n}=\sum_{i=n}^{\infty} \frac{2^{i}}{i!}$ for all integers $n \geqslant 0$.
(a) Find a closed-form expression for the (ordinary) generating function $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+$ $\cdots+a_{n} x^{n}+\cdots$ of the sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots$
(b) Use the expression for $A(x)$ in Part (a) to prove that $\sum_{n=0}^{\infty} a_{n}=3 e^{2}$.
16. Let $m \geqslant 1$ be an integer constant. Let $b_{n}^{(m)}$ denote the number of ordered partitions (that is, compositions) of the integer $n \geqslant 0$ such that no summand is larger than m.
(a) Prove that the (ordinary) generating function of $b_{n}^{(m)}$ is

$$
B^{(m)}(x)=\frac{1-x}{1-2 x+x^{m+1}}
$$

(b) From the formula of Part (a), deduce that $b_{n}^{(2)}=F_{n+1}$, where $F_{0}, F_{1}, F_{2}, \ldots$ is the sequence of Fibonacci numbers.
17. Let l_{n} be the number of lines printed by the call $f(n)$ for some integer $n \geqslant 0$.

```
void f ( int n )
{
    int i, j;
    printf("Hi\n");
    if (n == 0) return;
    for (i=0; i<=n-1; ++i)
        for (j=0; j<=i; ++j)
                        f(j);
}
```

(a) Let $L(x)=l_{0}+l_{1} x+l_{2} x^{2}+\cdots+l_{n} x^{n}+\cdots$ be the generating function of the sequence $l_{0}, l_{1}, l_{2}, \ldots$ Prove that $L(x)=\frac{1-x}{1-3 x+x^{2}}$.
(b) Derive an explicit formula for l_{n} from the generating function $L(x)$.
18. Find the number of solutions of $x_{1}+x_{2}+x_{3}+x_{4}=n$ with integer-valued variables satisfying $x_{1} \geqslant-1$, $x_{2} \geqslant-2, x_{3} \geqslant 3$, and $x_{4} \geqslant 4$.
19. How many bit strings of length n are there in which 1 's always occur in contiguous pairs? You should consider strings of the form 0011011110 , but not of the form 0110111110 , because the last 1 is not paired.
20. Use generating functions to prove that every positive integer has a unique binary representation (without leading zero bits).
21. Let $A(x)$ be the generating function of the sequence $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$ of real numbers. Prove that $1 / A(x)$ is the generating function of a sequence if and only if $a_{0} \neq 0$.
22. (a) Find the probability generating function of the binomial distribution $\operatorname{Pr}\left[B_{n, p}=r\right]=\binom{n}{r} p^{r}(1-p)^{n-r}$ for $r=0,1,2, \ldots, n$. Hence deduce the expectation $\mathrm{E}\left[B_{n, p}\right]$.
(b) Find the probability generating function of the uniform distribution $\operatorname{Pr}\left[U_{a, b}=r\right]=\frac{1}{b-a+1}$ for $r=a, a+1, a+2, \ldots, b$ (where $a, b \in \mathbb{Z}$ with $a \leqslant b$). Hence deduce the expectation $\mathrm{E}\left[U_{a, b}\right]$.
23. Let $A(x)$ be the exponential generating function of a sequence $a_{0}, a_{1}, a_{2}, \ldots$ Express the exponential generating functions of the following sequences in terms of $A(x)$.
(a) $a_{0}, 2 a_{1}, 3 a_{2}, 4 a_{3}, 5 a_{4}, \ldots$
(b) $0, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, \ldots$
(c) $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots$
(d) $a_{0}, a_{1}-a_{0}, a_{2}-a_{1}, a_{3}-a_{2}, \ldots$
24. Let $A(x)$ and $B(x)$ be the exponential generating functions of the two sequences $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$ and $b_{0}, b_{1}, b_{2}, b_{3}, \ldots$. Of what sequence is $A(x) B(x)$ the EGF?
25. Prove the following identities involving the Stirling numbers $S(n, k)$ of the second kind. Take $S(0,0)=1$, and $S(n, k)=0$ for $n<k$.
(a) $\sum_{n \in \mathbb{N}_{0}} S(n, k) x^{n}=\prod_{r=1}^{k} \frac{x}{1-r x}$.
(b) $\sum_{n \in \mathbb{N}_{0}} S(n, k) \frac{x^{n}}{n!}=\frac{\left(e^{x}-1\right)^{k}}{k!}$.
26. Deduce that the exponential generating function of the Bell numbers $B_{n}, n \in \mathbb{N}_{0}$, is $e^{e^{x}-1}$.
27. Find the moment generating functions of the following random variables.
(a) Binomial distribution: $\operatorname{Pr}\left[B_{n, p}=r\right]=\binom{n}{r} p^{r}(1-p)^{r}$ for $r=0,1,2, \ldots, n$.
(b) Geometric distribution: $\operatorname{Pr}\left[G_{p}=r\right]=(1-p)^{r-1} p$ for $r \in \mathbb{N}$.
(c) The discrete uniform distribution: $\operatorname{Pr}\left[U_{a, b}=r\right]=\frac{1}{b-a+1}$ for $r=a, a+1, a+2, \ldots, b$.
(d) The continuous uniform distribution: $\operatorname{Pr}\left[C_{a, b}=r\right]=\frac{1}{b-a}$ for $r \in[a, b]$.
(e) Poisson distribution: $\operatorname{Pr}\left[P_{\lambda}=r\right]=e^{-\lambda} \frac{\lambda^{r}}{r!}$ for $r \in \mathbb{N}_{0}$.
28. Generating functions with multiple variables are sometimes used. Suppose that r elements are chosen from $\{1,2,3, \ldots, n\}$ such that the sum of the chosen elements is s. We want to count how many such collections are possible. Argue that this count is the coefficient of $x^{r} y^{s}$ of $(1+x y)\left(1+x y^{2}\right)\left(1+x y^{3}\right) \cdots\left(1+x y^{n}\right)$. Find the two-variable generating function of these counts if the r elements are chosen from $\{1,2,3, \ldots, n\}$ with repetitions allowed.
29. Let $a_{n}, n \geqslant 0$, be the sequence satisfying

$$
\begin{aligned}
& a_{0}=0 \\
& a_{1}=1 \\
& a_{n}=a_{n-1}+\sum_{k=1}^{n-2} a_{k} a_{n-1-k} \text { for } n \geqslant 2 .
\end{aligned}
$$

Prove that the generating function for this sequence is $\frac{1-x-\sqrt{1-2 x-3 x^{2}}}{2 x}$. Solve for a_{n}.
30. Solve the following recurrence relation using generating functions: $a_{0}=1, a_{1}=2, a_{2}=3, a_{n}=4 a_{n-1}-$ $5 a_{n-2}+2 a_{n-3}+1$ for $n \geqslant 3$.

