Tutorial 7

Sizes of Sets

- **1.** Let *A* and *B* be uncountable sets with $A \subseteq B$. Prove or disprove: *A* and *B* are equinumerous.
- Solution False. For example, take $B = 2^{\mathbb{R}}$, and $A = \{\{x\} \mid x \in \mathbb{R}\}$. By the power-set theorem, $|B| > |\mathbb{R}|$. Moreover, A is equinumerous with the uncountable set \mathbb{R} via the bijective correspondence $\mathbb{R} \to A$ taking $x \mapsto \{x\}$.
- **2.** Let *A* be an uncountable set and *B* a countably infinite subset of *A*. Prove/Disprove: *A* is equinumerous with A B.
- Solution True. Since $A B \subseteq A$, we have $|A B| \leq |A|$. We need to show that $|A| \leq |A B|$, that is, there is an injective map $f : A \to A B$. Since *B* is countable, we can write $B = \{b_1, b_2, b_3, \ldots\}$. If A B is finite (and so countable), then $A = (A B) \cup B$ is countable too, so A B is infinite. This implies that we can find a countably infinite subset $C = \{c_1, c_2, c_3, \ldots\}$ of A B. Now, define the map $f : A \to A B$ as

$$f(a) = \begin{cases} c_{2n-1} & \text{if } a = c_n, \\ c_{2n} & \text{if } a = b_n, \\ a & \text{otherwise.} \end{cases}$$

It is an easy matter to show that f is a bijection (so an injection too).

- **3.** Prove that the real interval [0,1) is equinumerous with the unit square $[0,1) \times [0,1)$.
- Solution The sets $\mathbb{F} = \mathbb{Q} \cap [0,1)$ and \mathbb{F}^2 are countable. Therefore $A = [0,1) \mathbb{F}$ and $B = [0,1)^2 \mathbb{F}^2$ are equinumerous with [0,1) and $[0,1)^2$, respectively. Now, define that map $f: B \to A$ taking $(0.a_1a_2a_3..., 0.b_1b_2b_3...) \mapsto 0.a_1b_1a_2b_2a_3b_3...$ Clearly, f is injective. Thus, $|B| \leq |A|$. The other inequality $|A| \leq |B|$ is simpler (map $0.c_1c_2c_3...$ to $(0.c_1c_2c_3..., 0.c_1c_2c_3...)$).
- **4.** Define a relation \sim on \mathbb{R} as $a \sim b$ if and only if $a b \in \mathbb{Q}$.
 - (a) Prove that \sim is an equivalence relation.

Solution Routine job.

- (b) Is the set \mathbb{R}/\sim of all equivalence classes of \sim countable?
- Solution No. \mathbb{R} is the union of all equivalence classes of \sim . Each equivalence class [x] is in bijective correspondence with \mathbb{Q} via the map $r \mapsto x + r$, and so is countable. A countable union of countable sets is again countable.
- 5. Let $\mathbb{Z}[x]$ denote the set of all univariate polynomials with integer coefficients. Prove that $\mathbb{Z}[x]$ is countable.
- Solution $\mathbb{Z}[x]$ is the countable union of $\{0\}$ and $\mathbb{Z}_d[x]$ for $d \in \mathbb{N}_0$, where $\mathbb{Z}_d[x]$ is the set of all univariate polynomials with integer coefficients and degree exactly equal to d. Such a polynomial can be written as $a_d x^d + a_{d-1} x^{d-1} + \cdots + a_2 x^2 + a_1 x + a_0$ with $a_i \in \mathbb{Z}$ and $a_d \neq 0$. Since each a_i has countably many possibilities, and there are only finitely many (d + 1 to be precise) coefficients, each $\mathbb{Z}_d[x]$ is countable.
- 6. (a) A real or complex number *a* is called *algebraic* if f(a) = 0 for some non-zero $f(x) \in \mathbb{Z}[x]$. Let A denote the set of all algebraic numbers. Prove that A is countable.

Solution There are countably many polynomials in $\mathbb{Z}[x] - \{0\}$. Each such polynomial has only finitely many roots.

- (b) Prove that there are uncountably many transcendental numbers.
- Solution \mathbb{R} is the disjoint union of $\mathbb{R} \cap \mathbb{A}$ and the set \mathbb{T} of all (real) transcendental numbers. Since \mathbb{A} is countable, so too is $\mathbb{R} \cap \mathbb{A}$. If \mathbb{T} is countable, then \mathbb{R} is countable too.
- 7. Let $\mathbb{Z}[x, y]$ be the set of all bivariate polynomials with integer coefficients.
 - (a) Prove that $\mathbb{Z}[x, y]$ is countable.

Solution Similar to the proof for $\mathbb{Z}[x]$.

(b) Let $\mathbb{V} = \{(a,b) \in \mathbb{C} \times \mathbb{C} \mid f(a,b) = 0 \text{ for some nonzero } f(x,y) \in \mathbb{Z}[x,y]\}$. Is \mathbb{V} countable?

Solution No. The non-zero polynomial $x - y \in \mathbb{Z}[x, y]$ has a root (a, a) for all $a \in \mathbb{C}$. That is, $\mathbb{C} \times \mathbb{C} \subseteq \mathbb{V}$.

- **8.** A set $S \subseteq \mathbb{R}$ is called *bounded* if *S* has both a lower bound and an upper bound in \mathbb{R} . Countable/Uncountable?
 - (a) The set of all bounded subsets of \mathbb{Z} .
- Solution Countable. Let S be a bounded subset of \mathbb{Z} , Let $l \in \mathbb{R}$ be a lower bound of S, and $b \in \mathbb{R}$ an upper bound of S. But then S is a subset of the finite set [[l], [u]], and is itself finite. Now, use the facts that the two integer bounds can be chosen in only countably many ways, and the power set of a finite set is finite (and so countable).
 - (b) The set of all bounded subsets of \mathbb{Q} .
- Solution Uncountable. Let \mathbb{B} denote the set of all bounded subsets of \mathbb{Q} . Define a map $f : \mathbb{R} \to \mathbb{B}$ as follows. If x is rational, take $f(x) = \{x\}$. If x is irrational, let $a = \lfloor x \rfloor$. Then, x a is a proper fraction (in the interval [0, 1)), and has an infinite decimal expansion of the form $0.d_1d_2d_3...$ Define $f(x) = \{a, a + 0.d_1, a + 0.d_1d_2, a + 0.d_1d_2d_3,...\}$, so f(x) is bounded by a and x. It is an easy matter to argue that f is injective.
- 9. Provide a diagonalization argument to prove that the set of all infinite bit sequences is uncountable.
- Solution Let S denote the set of all infinite bit sequences. Suppose that S is countable. Then, there exists a bijection $f: \mathbb{N} \to S$. We write $f(1), f(2), f(3), \ldots$ as follows.

 $f(1) = a_{11}, a_{12}, a_{13}, \dots, a_{1n}, \dots$ $f(2) = a_{21}, a_{22}, a_{23}, \dots, a_{2n}, \dots$ $f(3) = a_{31}, a_{32}, a_{33}, \dots, a_{3n}, \dots$ \vdots $f(n) = a_{n1}, a_{n2}, a_{n3}, \dots, a_{nn}, \dots$ \vdots

Consider the sequence $s = a'_{11}, a'_{22}, a'_{33}, \dots, a'_{nn}, \dots$, where ' denotes bit complement. Then, $s \neq f(n)$ for all $n \in \mathbb{N}$. So f is not surjective, a contradiction.

Additional Exercises

- 10. Let A, B be sets. Prove or disprove:
 - (a) If A is countable and $A \subseteq B$, then B is countable.
 - (b) If A is uncountable and $A \subseteq B$, then B is uncountable.
 - (c) If A and B are countable, then $A \cap B$ is countable.
 - (d) If A and B are uncountable, then $A \cap B$ is uncountable.
- **11.** Let *A* be an infinite set.
 - (a) Prove that there exists a map $A \rightarrow A$ which is injective but not surjective.
 - (b) Prove that there exists a map $A \rightarrow A$ which is surjective but not injective.
- 12. (a) Prove that the set of all finite subsets of \mathbb{N} is countable.
 - (b) Conclude that the set of all infinite subsets of \mathbb{N} is uncountable.
- 13. Let A be a finite set.
 - (a) Prove that the set of all functions $A \to \mathbb{N}$ is countable.
 - (b) Let $|A| \ge 2$. Prove that the set of all functions $\mathbb{N} \to A$ is uncountable.
 - (c) Let $|A| \ge 2$. Prove that the set of all functions $\mathbb{N} \to A$ is equinumerous with \mathbb{R} .
- 14. Provide explicit bijections between the following pairs of sets.
 - (a) The sets \mathbb{N} and $\mathbb{N} \times \mathbb{N}$.
 - (b) The set of rational numbers in the real interval [0,1) and the set \mathbb{Q} of all rational numbers.

- (c) The set of irrational numbers in the real interval [0,1) and the set of all irrational numbers.
- (d) The real interval [0,1) and \mathbb{R} .
- (e) The real interval (0,1) and \mathbb{R} .
- (f) The real intervals [0,1) and [a,b) for any $a, b \in \mathbb{R}$, a < b.
- (g) The real intervals [0,1) and (0,1).
- (h) The real intervals [0,1] and (0,1).
- **15.** Let *A*, *B* be sets, where *A* is equinumerous with \mathbb{R} and *B* is equinumerous with \mathbb{N} .
 - (a) Prove that $A \cup B$ is equinumerous with \mathbb{R} .
 - (b) Prove that the Cartesian product $A \times B$ is equinumerous with \mathbb{R} .
- **16.** Prove that the set $\{a + ib \mid a, b \in \mathbb{Z}\}$ of Gaussian integers is countable.
- 17. (a) Prove that the set $\mathbb{Q}[[X]]$ of all power series with rational coefficients is uncountable.

(b) Prove that the set $\mathbb{Q}(X) = \{f(X)/g(X) \mid g(X) \neq 0\}$ of all rational functions with rational coefficients is countable.

(c) Conclude that $\mathbb{Q}[[X]]$ contains a power series which is not the power series expansion of any rational function in $\mathbb{Q}(X)$. Can you identify any such power series explicitly?

- 18. Prove that the union of two sets each equinumerous with \mathbb{R} is again equinumerous with \mathbb{R}
- **19.** Prove that the set of all permutations of \mathbb{N} is not countable.
- **20.** Let *A* be a set of size ≥ 2 (*A* may be infinite). Modify the diagonalization proof to establish that there cannot exist a bijection between *A* and the set of all *non-empty* subsets of *A*.
- **21.** Let $S = (s_1, s_2, s_3, ...)$ and $T = (t_1, t_2, t_3, ...)$ be two infinite bit sequences. We say that *S* and *T* have the *same tail* if there exists $N \in \mathbb{N}$ such that $s_n = t_n$ for all $n \ge N$. Prove that for any given sequence *S*, the set of sequences having the same tail as *S* is countable.
- **22.** Let *S* be the set of all infinite bit sequences. The *n*-th element of a sequence $\alpha \in S$ is denoted by $\alpha(n)$ for $n \ge 0$. Prove the countability/uncountability of each of the following two subsets of *S*.
 - (a) $T_1 = \left\{ \alpha \in S \mid \alpha(n) = 1 \text{ and } \alpha(n+1) = 0 \text{ for some } n \ge 0 \right\}.$

(b)
$$T_2 = \Big\{ \alpha \in S \mid \alpha(n) = 1 \text{ and } \alpha(n+1) = 0 \text{ for no } n \ge 0 \Big\}.$$

** 23. [*Cantor set*] Start with the real interval I = [0, 1]. Remove the open middle one-third $(\frac{1}{3}, \frac{2}{3})$ from [0, 1]. This leaves us with two closed intervals $[0, \frac{1}{3}]$ and $[\frac{2}{3}, 1]$. Remove the open middle one-thirds of these two intervals, that is, $(\frac{1}{9}, \frac{2}{9})$ and $(\frac{7}{9}, \frac{8}{9})$. The portion of *I* that remains now consists of the four closed intervals $[0, \frac{1}{3}], [\frac{2}{9}, \frac{1}{3}], [\frac{2}{3}, \frac{7}{9}], and [\frac{8}{9}, 1]$. Again, remove the open middle one-thirds of these four intervals, leaving eight closed subintervals in *I*. Repeat this process infinitely often. Let *C* be the subset of *I* that remains after this infinite process. Prove that *C* is uncountable.

Note: The cantor set *C* is one of the first explicitly constructed examples of *fractal sets*.

** 24. Repeat Cantor's process of the last exercise with the exception that you remove the closed middle one-thirds of the remaining intervals. That is, in the first step, you remove $[\frac{1}{3}, \frac{2}{3}]$, in the second step, you remove $[\frac{1}{9}, \frac{2}{9}]$ and $[\frac{7}{9}, \frac{8}{9}]$, and so on. Now, let *D* be the subset of I = [0, 1], that remains after this infinite process. Evidently, *D* is a proper subset of *C*. Is *D* uncountable too?