CS21201 Discrete Structures

Tutorial 7

Sizes of Sets

1. Let A and B be uncountable sets with $A \subseteq B$. Prove or disprove: A and B are equinumerous.

Solution False. For example, take $B=2^{\mathbb{R}}$, and $A=\{\{x\} \mid x \in \mathbb{R}\}$. By the power-set theorem, $|B|>|\mathbb{R}|$. Moreover, A is equinumerous with the uncountable set \mathbb{R} via the bijective correspondence $\mathbb{R} \rightarrow A$ taking $x \mapsto\{x\}$.
2. Let A be an uncountable set and B a countably infinite subset of A. Prove/Disprove: A is equinumerous with $A-B$.

Solution True. Since $A-B \subseteq A$, we have $|A-B| \leqslant|A|$. We need to show that $|A| \leqslant|A-B|$, that is, there is an injective map $f: A \rightarrow A-B$. Since B is countable, we can write $B=\left\{b_{1}, b_{2}, b_{3}, \ldots\right\}$. If $A-B$ is finite (and so countable), then $A=(A-B) \cup B$ is countable too, so $A-B$ is infinite. This implies that we can find a countably infinite subset $C=\left\{c_{1}, c_{2}, c_{3}, \ldots\right\}$ of $A-B$. Now, define the map $f: A \rightarrow A-B$ as

$$
f(a)= \begin{cases}c_{2 n-1} & \text { if } a=c_{n} \\ c_{2 n} & \text { if } a=b_{n} \\ a & \text { otherwise }\end{cases}
$$

It is an easy matter to show that f is a bijection (so an injection too).
3. Prove that the real interval $[0,1)$ is equinumerous with the unit square $[0,1) \times[0,1)$.

Solution The sets $\mathbb{F}=\mathbb{Q} \cap[0,1)$ and \mathbb{F}^{2} are countable. Therefore $A=[0,1)-\mathbb{F}$ and $B=[0,1)^{2}-\mathbb{F}^{2}$ are equinumerous with $[0,1)$ and $[0,1)^{2}$, respectively. Now, define that map $f: B \rightarrow A$ taking $\left(0 . a_{1} a_{2} a_{3} \ldots, 0 . b_{1} b_{2} b_{3} \ldots\right) \mapsto$ $0 . a_{1} b_{1} a_{2} b_{2} a_{3} b_{3} \ldots$. Clearly, f is injective. Thus, $|B| \leqslant|A|$. The other inequality $|A| \leqslant|B|$ is simpler (map $0 . c_{1} c_{2} c_{3} \ldots$ to $\left(0 . c_{1} c_{2} c_{3} \ldots, 0 . c_{1} c_{2} c_{3} \ldots\right)$).
4. Define a relation \sim on \mathbb{R} as $a \sim b$ if and only if $a-b \in \mathbb{Q}$.
(a) Prove that \sim is an equivalence relation.

Solution Routine job.

(b) Is the set \mathbb{R} / \sim of all equivalence classes of \sim countable?

Solution No. \mathbb{R} is the union of all equivalence classes of \sim. Each equivalence class $[x]$ is in bijective correspondence with \mathbb{Q} via the map $r \mapsto x+r$, and so is countable. A countable union of countable sets is again countable.
5. Let $\mathbb{Z}[x]$ denote the set of all univariate polynomials with integer coefficients. Prove that $\mathbb{Z}[x]$ is countable.

Solution $\mathbb{Z}[x]$ is the countable union of $\{0\}$ and $\mathbb{Z}_{d}[x]$ for $d \in \mathbb{N}_{0}$, where $\mathbb{Z}_{d}[x]$ is the set of all univariate polynomials with integer coefficients and degree exactly equal to d. Such a polynomial can be written as $a_{d} x^{d}+a_{d-1} x^{d-1}+$ $\cdots+a_{2} x^{2}+a_{1} x+a_{0}$ with $a_{i} \in \mathbb{Z}$ and $a_{d} \neq 0$. Since each a_{i} has countably many possibilities, and there are only finitely many ($d+1$ to be precise) coefficients, each $\mathbb{Z}_{d}[x]$ is countable.
6. (a) A real or complex number a is called algebraic if $f(a)=0$ for some non-zero $f(x) \in \mathbb{Z}[x]$. Let \mathbb{A} denote the set of all algebraic numbers. Prove that \mathbb{A} is countable.

Solution There are countably many polynomials in $\mathbb{Z}[x]-\{0\}$. Each such polynomial has only finitely many roots.
(b) Prove that there are uncountably many transcendental numbers.

Solution \mathbb{R} is the disjoint union of $\mathbb{R} \cap \mathbb{A}$ and the set \mathbb{T} of all (real) transcendental numbers. Since \mathbb{A} is countable, so too is $\mathbb{R} \cap \mathbb{A}$. If \mathbb{T} is countable, then \mathbb{R} is countable too.
7. Let $\mathbb{Z}[x, y]$ be the set of all bivariate polynomials with integer coefficients.
(a) Prove that $\mathbb{Z}[x, y]$ is countable.

Solution Similar to the proof for $\mathbb{Z}[x]$.
(b) Let $\mathbb{V}=\{(a, b) \in \mathbb{C} \times \mathbb{C} \mid f(a, b)=0$ for some nonzero $f(x, y) \in \mathbb{Z}[x, y]\}$. Is \mathbb{V} countable?

Solution No. The non-zero polynomial $x-y \in \mathbb{Z}[x, y]$ has a $\operatorname{root}(a, a)$ for all $a \in \mathbb{C}$. That is, $\mathbb{C} \times \mathbb{C} \subseteq \mathbb{V}$.
8. A set $S \subseteq \mathbb{R}$ is called bounded if S has both a lower bound and an upper bound in \mathbb{R}. Countable/Uncountable?
(a) The set of all bounded subsets of \mathbb{Z}.

Solution Countable. Let S be a bounded subset of \mathbb{Z}, Let $l \in \mathbb{R}$ be a lower bound of S, and $b \in \mathbb{R}$ an upper bound of S. But then S is a subset of the finite set $[[l\rceil,\lfloor u\rfloor]$, and is itself finite. Now, use the facts that the two integer bounds can be chosen in only countably many ways, and the power set of a finite set is finite (and so countable).
(b) The set of all bounded subsets of \mathbb{Q}.

Solution Uncountable. Let \mathbb{B} denote the set of all bounded subsets of \mathbb{Q}. Define a map $f: \mathbb{R} \rightarrow \mathbb{B}$ as follows. If x is rational, take $f(x)=\{x\}$. If x is irrational, let $a=\lfloor x\rfloor$. Then, $x-a$ is a proper fraction (in the interval $[0,1)$), and has an infinite decimal expansion of the form $0 . d_{1} d_{2} d_{3} \ldots$. Define $f(x)=\left\{a, a+0 . d_{1}, a+0 . d_{1} d_{2}, a+\right.$ $\left.0 . d_{1} d_{2} d_{3}, \ldots\right\}$, so $f(x)$ is bounded by a and x. It is an easy matter to argue that f is injective.
9. Provide a diagonalization argument to prove that the set of all infinite bit sequences is uncountable.

Solution Let S denote the set of all infinite bit sequences. Suppose that S is countable. Then, there exists a bijection $f: \mathbb{N} \rightarrow S$. We write $f(1), f(2), f(3), \ldots$ as follows.

$$
\begin{aligned}
f(1) & =a_{11}, a_{12}, a_{13}, \ldots, a_{1 n}, \ldots \\
f(2) & =a_{21}, a_{22}, a_{23}, \ldots, a_{2 n}, \ldots \\
f(3) & =a_{31}, a_{32}, a_{33}, \ldots, a_{3 n}, \ldots \\
& \vdots \\
f(n) & =a_{n 1}, a_{n 2}, a_{n 3}, \ldots, a_{n n}, \ldots \\
& \vdots
\end{aligned}
$$

Consider the sequence $s=a_{11}^{\prime}, a_{22}^{\prime}, a_{33}^{\prime}, \ldots, a_{n n}^{\prime}, \ldots$, where ' denotes bit complement. Then, $s \neq f(n)$ for all $n \in \mathbb{N}$. So f is not surjective, a contradiction.

Additional Exercises

10. Let A, B be sets. Prove or disprove:
(a) If A is countable and $A \subseteq B$, then B is countable.
(b) If A is uncountable and $A \subseteq B$, then B is uncountable.
(c) If A and B are countable, then $A \cap B$ is countable.
(d) If A and B are uncountable, then $A \cap B$ is uncountable.
11. Let A be an infinite set.
(a) Prove that there exists a map $A \rightarrow A$ which is injective but not surjective.
(b) Prove that there exists a map $A \rightarrow A$ which is surjective but not injective.
12. (a) Prove that the set of all finite subsets of \mathbb{N} is countable.
(b) Conclude that the set of all infinite subsets of \mathbb{N} is uncountable.
13. Let A be a finite set.
(a) Prove that the set of all functions $A \rightarrow \mathbb{N}$ is countable.
(b) Let $|A| \geqslant 2$. Prove that the set of all functions $\mathbb{N} \rightarrow A$ is uncountable.
(c) Let $|A| \geqslant 2$. Prove that the set of all functions $\mathbb{N} \rightarrow A$ is equinumerous with \mathbb{R}.
14. Provide explicit bijections between the following pairs of sets.
(a) The sets \mathbb{N} and $\mathbb{N} \times \mathbb{N}$.
(b) The set of rational numbers in the real interval $[0,1)$ and the set \mathbb{Q} of all rational numbers.
(c) The set of irrational numbers in the real interval $[0,1)$ and the set of all irrational numbers.
(d) The real interval $[0,1)$ and \mathbb{R}.
(e) The real interval $(0,1)$ and \mathbb{R}.
(f) The real intervals $[0,1)$ and $[a, b)$ for any $a, b \in \mathbb{R}, a<b$.
(g) The real intervals $[0,1)$ and $(0,1)$.
(h) The real intervals $[0,1]$ and $(0,1)$.
15. Let A, B be sets, where A is equinumerous with \mathbb{R} and B is equinumerous with \mathbb{N}.
(a) Prove that $A \cup B$ is equinumerous with \mathbb{R}.
(b) Prove that the Cartesian product $A \times B$ is equinumerous with \mathbb{R}.
16. Prove that the set $\{a+\mathrm{i} b \mid a, b \in \mathbb{Z}\}$ of Gaussian integers is countable.
17. (a) Prove that the set $\mathbb{Q}[[X]]$ of all power series with rational coefficients is uncountable.
(b) Prove that the set $\mathbb{Q}(X)=\{f(X) / g(X) \mid g(X) \neq 0\}$ of all rational functions with rational coefficients is countable.
(c) Conclude that $\mathbb{Q}[[X]]$ contains a power series which is not the power series expansion of any rational function in $\mathbb{Q}(X)$. Can you identify any such power series explicitly?
18. Prove that the union of two sets each equinumerous with \mathbb{R} is again equinumerous with \mathbb{R}
19. Prove that the set of all permutations of \mathbb{N} is not countable.
20. Let A be a set of size $\geqslant 2$ (A may be infinite). Modify the diagonalization proof to establish that there cannot exist a bijection between A and the set of all non-empty subsets of A.
21. Let $S=\left(s_{1}, s_{2}, s_{3}, \ldots\right)$ and $T=\left(t_{1}, t_{2}, t_{3}, \ldots\right)$ be two infinite bit sequences. We say that S and T have the same tail if there exists $N \in \mathbb{N}$ such that $s_{n}=t_{n}$ for all $n \geqslant N$. Prove that for any given sequence S, the set of sequences having the same tail as S is countable.
22. Let S be the set of all infinite bit sequences. The n-th element of a sequence $\alpha \in S$ is denoted by $\alpha(n)$ for $n \geqslant 0$. Prove the countability/uncountability of each of the following two subsets of S.
(a) $T_{1}=\{\alpha \in S \mid \alpha(n)=1$ and $\alpha(n+1)=0$ for some $n \geqslant 0\}$.
(b) $T_{2}=\{\alpha \in S \mid \alpha(n)=1$ and $\alpha(n+1)=0$ for no $n \geqslant 0\}$.
23. [Cantor set] Start with the real interval $I=[0,1]$. Remove the open middle one-third $\left(\frac{1}{3}, \frac{2}{3}\right)$ from $[0,1]$. This leaves us with two closed intervals $\left[0, \frac{1}{3}\right]$ and $\left[\frac{2}{3}, 1\right]$. Remove the open middle one-thirds of these two intervals, that is, $\left(\frac{1}{9}, \frac{2}{9}\right)$ and $\left(\frac{7}{9}, \frac{8}{9}\right)$. The portion of I that remains now consists of the four closed intervals $\left[0, \frac{1}{9}\right],\left[\frac{2}{9}, \frac{1}{3}\right],\left[\frac{2}{3}, \frac{7}{9}\right]$, and $\left[\frac{8}{9}, 1\right]$. Again, remove the open middle one-thirds of these four intervals, leaving eight closed subintervals in I. Repeat this process infinitely often. Let C be the subset of I that remains after this infinite process. Prove that C is uncountable.
Note: The cantor set C is one of the first explicitly constructed examples of fractal sets.
** 24. Repeat Cantor's process of the last exercise with the exception that you remove the closed middle one-thirds of the remaining intervals. That is, in the first step, you remove $\left[\frac{1}{3}, \frac{2}{3}\right]$, in the second step, you remove $\left[\frac{1}{9}, \frac{2}{9}\right]$ and $\left[\frac{7}{9}, \frac{8}{9}\right]$, and so on. Now, let D be the subset of $I=[0,1]$, that remains after this infinite process. Evidently, D is a proper subset of C. Is D uncountable too?
