
CS21201 Discrete Structures

Tutorial 7

Sizes of Sets

1. Let A and B be uncountable sets with A ⊆ B. Prove or disprove: A and B are equinumerous.

Solution False. For example, take B = 2R, and A = {{x} | x ∈R}. By the power-set theorem, |B|> |R|. Moreover, A is

equinumerous with the uncountable set R via the bijective correspondence R→ A taking x 7→ {x}.

2. Let A be an uncountable set and B a countably infinite subset of A. Prove/Disprove: A is equinumerous with
A−B.

Solution True. Since A−B ⊆ A, we have |A−B|6 |A|. We need to show that |A|6 |A−B|, that is, there is an injective

map f : A → A−B. Since B is countable, we can write B = {b1,b2,b3, . . .}. If A−B is finite (and so countable),

then A = (A−B)∪B is countable too, so A−B is infinite. This implies that we can find a countably infinite

subset C = {c1,c2,c3, . . .} of A−B. Now, define the map f : A → A−B as

f (a) =

{

c2n−1 if a = cn,

c2n if a = bn,

a otherwise.

It is an easy matter to show that f is a bijection (so an injection too).

3. Prove that the real interval [0,1) is equinumerous with the unit square [0,1)× [0,1).

Solution The sets F=Q∩ [0,1) and F2 are countable. Therefore A = [0,1)−F and B = [0,1)2 −F2 are equinumerous

with [0,1) and [0,1)2, respectively. Now, define that map f : B → A taking (0.a1a2a3 . . . ,0.b1b2b3 . . .) 7→
0.a1b1a2b2a3b3 . . . . Clearly, f is injective. Thus, |B| 6 |A|. The other inequality |A| 6 |B| is simpler (map

0.c1c2c3 . . . to (0.c1c2c3 . . . ,0.c1c2c3 . . .)).

4. Define a relation ∼ on R as a ∼ b if and only if a−b ∈Q.

(a) Prove that ∼ is an equivalence relation.

Solution Routine job.

(b) Is the set R/∼ of all equivalence classes of ∼ countable?

Solution No. R is the union of all equivalence classes of ∼. Each equivalence class [x] is in bijective correspondence

with Q via the map r 7→ x+ r, and so is countable. A countable union of countable sets is again countable.

5. Let Z[x] denote the set of all univariate polynomials with integer coefficients. Prove that Z[x] is countable.

Solution Z[x] is the countable union of {0} and Zd [x] for d ∈ N0, where Zd [x] is the set of all univariate polynomials

with integer coefficients and degree exactly equal to d. Such a polynomial can be written as adxd +ad−1xd−1 +
· · ·+a2x2 +a1x+a0 with ai ∈Z and ad 6= 0. Since each ai has countably many possibilities, and there are only

finitely many (d +1 to be precise) coefficients, each Zd [x] is countable.

6. (a) A real or complex number a is called algebraic if f (a) = 0 for some non-zero f (x) ∈ Z[x]. Let A

denote the set of all algebraic numbers. Prove that A is countable.

Solution There are countably many polynomials in Z[x]−{0}. Each such polynomial has only finitely many roots.

(b) Prove that there are uncountably many transcendental numbers.

Solution R is the disjoint union of R∩A and the set T of all (real) transcendental numbers. Since A is countable, so too

is R∩A. If T is countable, then R is countable too.

7. Let Z[x,y] be the set of all bivariate polynomials with integer coefficients.

(a) Prove that Z[x,y] is countable.

Solution Similar to the proof for Z[x].
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(b) Let V= {(a,b) ∈ C×C | f (a,b) = 0 for some nonzero f (x,y) ∈ Z[x,y]}. Is V countable?

Solution No. The non-zero polynomial x− y ∈ Z[x,y] has a root (a,a) for all a ∈C. That is, C×C⊆V.

8. A set S⊆R is called bounded if S has both a lower bound and an upper bound in R. Countable/Uncountable?

(a) The set of all bounded subsets of Z.

Solution Countable. Let S be a bounded subset of Z, Let l ∈ R be a lower bound of S, and b ∈ R an upper bound of

S. But then S is a subset of the finite set [⌈l⌉ ,⌊u⌋], and is itself finite. Now, use the facts that the two integer

bounds can be chosen in only countably many ways, and the power set of a finite set is finite (and so countable).

(b) The set of all bounded subsets of Q.

Solution Uncountable. Let B denote the set of all bounded subsets of Q. Define a map f : R→ B as follows. If x is

rational, take f (x) = {x}. If x is irrational, let a = ⌊x⌋. Then, x− a is a proper fraction (in the interval [0,1)),
and has an infinite decimal expansion of the form 0.d1d2d3 . . . . Define f (x) = {a,a+ 0.d1,a+ 0.d1d2,a+
0.d1d2d3, . . .}, so f (x) is bounded by a and x. It is an easy matter to argue that f is injective.

9. Provide a diagonalization argument to prove that the set of all infinite bit sequences is uncountable.

Solution Let S denote the set of all infinite bit sequences. Suppose that S is countable. Then, there exists a bijection

f : N→ S. We write f (1), f (2), f (3), . . . as follows.

f (1) = a11,a12,a13, . . . ,a1n, . . .

f (2) = a21,a22,a23, . . . ,a2n, . . .

f (3) = a31,a32,a33, . . . ,a3n, . . .

...

f (n) = an1,an2,an3, . . . ,ann, . . .

...

Consider the sequence s = a′11,a
′
22,a

′
33, . . . ,a

′
nn, . . . , where ′ denotes bit complement. Then, s 6= f (n) for all

n ∈N. So f is not surjective, a contradiction.

Additional Exercises

10. Let A,B be sets. Prove or disprove:

(a) If A is countable and A ⊆ B, then B is countable.

(b) If A is uncountable and A ⊆ B, then B is uncountable.

(c) If A and B are countable, then A∩B is countable.

(d) If A and B are uncountable, then A∩B is uncountable.

11. Let A be an infinite set.

(a) Prove that there exists a map A → A which is injective but not surjective.

(b) Prove that there exists a map A → A which is surjective but not injective.

12. (a) Prove that the set of all finite subsets of N is countable.

(b) Conclude that the set of all infinite subsets of N is uncountable.

13. Let A be a finite set.

(a) Prove that the set of all functions A → N is countable.

(b) Let |A|> 2. Prove that the set of all functions N→ A is uncountable.

(c) Let |A|> 2. Prove that the set of all functions N→ A is equinumerous with R.

14. Provide explicit bijections between the following pairs of sets.

(a) The sets N and N×N.

(b) The set of rational numbers in the real interval [0,1) and the set Q of all rational numbers.
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(c) The set of irrational numbers in the real interval [0,1) and the set of all irrational numbers.

(d) The real interval [0,1) and R.

(e) The real interval (0,1) and R.

(f) The real intervals [0,1) and [a,b) for any a,b ∈ R, a < b.

(g) The real intervals [0,1) and (0,1).
(h) The real intervals [0,1] and (0,1).

15. Let A,B be sets, where A is equinumerous with R and B is equinumerous with N.

(a) Prove that A∪B is equinumerous with R.

(b) Prove that the Cartesian product A×B is equinumerous with R.

16. Prove that the set {a+ ib | a,b ∈ Z} of Gaussian integers is countable.

17. (a) Prove that the set Q[[X ]] of all power series with rational coefficients is uncountable.

(b) Prove that the set Q(X) = { f (X)/g(X) | g(X) 6= 0} of all rational functions with rational coefficients

is countable.

(c) Conclude that Q[[X ]] contains a power series which is not the power series expansion of any rational

function in Q(X). Can you identify any such power series explicitly?

18. Prove that the union of two sets each equinumerous with R is again equinumerous with R

19. Prove that the set of all permutations of N is not countable.

20. Let A be a set of size > 2 (A may be infinite). Modify the diagonalization proof to establish that there cannot

exist a bijection between A and the set of all non-empty subsets of A.

21. Let S = (s1,s2,s3, . . .) and T = (t1, t2, t3, . . .) be two infinite bit sequences. We say that S and T have the

same tail if there exists N ∈N such that sn = tn for all n > N. Prove that for any given sequence S, the set of

sequences having the same tail as S is countable.

22. Let S be the set of all infinite bit sequences. The n-th element of a sequence α ∈ S is denoted by α(n) for

n > 0. Prove the countability/uncountability of each of the following two subsets of S.

(a) T1 =
{

α ∈ S | α(n) = 1 and α(n+1) = 0 for some n > 0
}

.

(b) T2 =
{

α ∈ S | α(n) = 1 and α(n+1) = 0 for no n > 0
}

.

** 23. [Cantor set] Start with the real interval I = [0,1]. Remove the open middle one-third ( 1
3
, 2

3
) from [0,1].

This leaves us with two closed intervals [0, 1
3
] and [ 2

3
,1]. Remove the open middle one-thirds of these two

intervals, that is, ( 1
9
, 2

9
) and ( 7

9
, 8

9
). The portion of I that remains now consists of the four closed intervals

[0, 1
9
], [ 2

9
, 1

3
], [ 2

3
, 7

9
], and [ 8

9
,1]. Again, remove the open middle one-thirds of these four intervals, leaving

eight closed subintervals in I. Repeat this process infinitely often. Let C be the subset of I that remains after

this infinite process. Prove that C is uncountable.

Note: The cantor set C is one of the first explicitly constructed examples of fractal sets.

** 24. Repeat Cantor’s process of the last exercise with the exception that you remove the closed middle one-thirds

of the remaining intervals. That is, in the first step, you remove [ 1
3
, 2

3
], in the second step, you remove [ 1

9
, 2

9
]

and [ 7
9
, 8

9
], and so on. Now, let D be the subset of I = [0,1], that remains after this infinite process. Evidently,

D is a proper subset of C. Is D uncountable too?
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