
CS21201 Discrete Structures

Tutorial 6

Sets, Relations, and Functions

1. Let A,B,C ∈ U are three arbitrary sets such that, A∪B = A∪C and A∩B = A∩C. Prove that, B =C.

Solution B = B∩ (A∪B) = B∩ (A∪C) = (B∩A)∪ (B∩C) = (A∩C)∪ (B∩C) = (A∪B)∩C = (A∪C)∩C = C.

B = B∪ (A∩B) = B∪ (A∩C) = (B∪A)∩ (B∪C) = (A∪C)∩ (B∪C) = (A∩B)∪C = (A∩C)∪C = C.

2. Define a relation ρ on N as a ρ b if and only if a has the same set of prime divisors as b. For example,

5 is related to 25 = 52, 12 = 22 × 3 is related to 54 = 2 × 33, but 12 is not related to 16 = 24, nor to

180 = 22 ×32 ×5.

(a) Prove that ρ is a equivalence relation on N.

Solution [Reflexive] a has the same set of prime divisors as itself, that is, ρ is reflexive.

[Symmetric] If a has the same set of prime divisors as b, then b too has the same set of prime divisors as a,

that is, ρ is symmetric.

[Transitive] If a and b have the same set of prime divisors, and b and c have the same set of prime divisors,

then a and c too have the same set of prime divisors, that is, ρ is transitive.

(b) Find the equivalence classes N/ρ .

Solution For all prime numbers, p1, p2, . . . , pk, . . ., we have, [pk] = {pi
k | i > 1}

For all composite numbers, q = p
e1
1 p

e2
2 · · · p

ek

k , we have, [p1 p2 · · · pk] = {q | pi > 1, ei > 0 where 1 6 i 6 k}

(c) A non-zero integer is called square-free if it is not divisible by the square of a prime number. Prove
that, each equivalence class in N/ρ contains a unique square-free integer, and that these unique square-free
integers are different in distinct equivalence classes.

Solution Let a ∈ N have the prime factorization a = p
e1
1 · · · p

et
t with t > 0, pairwise distinct primes p1, · · · , pt and each

ei > 0. But, then a is related to the square-free integer p1 · · · pt . No other square-free integer can have the same

prime divisors as p1 · · · pt . Thus, [a] contains a unique square-free integer. Also if [a] 6= [b], we have [a]∩ [b] = φ

(ρ is an equivalence relation and so the equivalence classes partition N), that is, the square-free integers in [a]
and [b] are distinct.

3. Define two relations ρ and σ on R as follows.

(a) a ρ b if and only if a−b ∈Q

(b) a σ b if and only if a−b ∈ Z

Prove that, ρ and σ are equivalence relations on R. Also, find the equivalence classes (with representatives).

Solution [Reflexive] 0 = 0
1

is a rational (or itself an integer).

[Symmetric] If a−b is rational (or integer), then b−a =−(a−b) is rational (or integer) too.

[Transitive] If a− b and b− c are rational (or integer), then a− c = (a− b)+ (b− c) is again rational (or

integer).

(a) Equivalence classes [x] of R/ρ is of the form, [x] =
{

x+ r | r ∈Q
}

(b) Equivalence classes [y] of R/σ is of the form, [y] =
{

y+ s | s ∈ Z
}

4. [Genesis of rational numbers] Define a relation ρ on A = Z× (Z \ {0}) as (a,b) ρ (c,d) if and only if

ad = bc. Prove that ρ is an equivalence relation. Argue that A/ρ is essentially the set Q of rational numbers.

In abstract algebra, we say that Q is the field of fractions of the integral domain Z. The equivalence class

[(a,b)] is conventionally denoted by a
b
.

Solution [Reflexive] (a,b) ρ (a,b), since ab = ba.

[Symmetric] (a,b) ρ (c,d) implies (c,d) ρ (a,b), since ad = bc ⇒ cb = da.

[Transitive] If (a,b) ρ (c,d) iff ad = bc, and (c,d) ρ (e, f ) iff c f = de, then we get, (a,b) ρ (e, f ), since

ad = bc ⇒ ad f = bc f ⇒ ad f = bde ⇒ a f = be (as d 6= 0).

Equivalence classes of A/ρ are of the form, [(a,b)] =
[

a
b

]

=
{

na
nb

| n ∈N
}

and denotes the set Q of rationals.
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5. For a function f : A → B, define a function F : P(A)→ P(B) as F (S) = f (S) for all S ⊆ A, where P(A)
and P(B) denote the power sets of A and B, respectively. Prove the following.

(a) F is injective if and only if f is injective.

Solution Note that f (S) =
⋃

s∈S f (s)⊆ B, where S ⊆ A.

[⇐] If f is injective, then we know that f (a1) = f (a2)⇒ a1 = a2, (a1,a2 ∈ A). So, for S1,S2 ⊆ A, since we

have f (S1) =
⋃

a1∈S1
f (a1) and f (S2) =

⋃

a2∈S2
f (a2), we have, f (S1) = f (S2)⇒ S1 = S2. For S1,S2 ∈ P(S)

and S1,S2 ⊆ A, we can say, F (S1) = F (S2)⇒ f (S1) = f (S2)⇒ S1 = S2. This concludes that F is injective.

[⇒] If F is injective, then for S1,S2 ∈ P(S) and S1,S2 ⊆ A, we can say, F (S1) = F (S2)⇒ S1 = S2. Since

F (S) = f (S) for all S ⊆ A, we can say, f (S1) = f (S2)⇒ S1 = S2. Therefore, for s1 ∈ S1 and s2 ∈ S2, we have

f (s1) = f (s2)⇒ s1 = s2. This concludes that f is injective.

(b) F is surjective if and only if f is surjective.

Solution [⇐] If f is surjective, then we know that for all b ∈ B, there exists a ∈ A, such that f (a) = b. Therefore, for

all S2 ⊆ B, there exists S1 ⊆ A, such that f (S1) = S2. It follows that for all S2 ∈ P(B), there exists S1 ∈ P(A),
such that F (S1) = S2. This concludes that F is surjective.

[⇒] If F is surjective, then we know that for all S2 ∈ P(B), there exists S1 ∈ P(A), such that F (S1) = S2.

As F (S) = f (S) for all S ⊆ A, it implies that for all S2 ⊆ B, there exists S1 ⊆ A, such that f (S1) = S2. It follows

that for all b ∈ S2, there exists a ∈ S1, such that f (a) = b. This concludes that f is surjective.

(c) F is bijective if and only if f is bijective.

Solution The above parts (a) and (b) together prove this.

6. Let f : A → B be a function and σ an equivalence relation on B. Define a relation ρ on A as: a ρ a′ if and

only if f (a) σ f (a′).

(a) Prove that ρ is an equivalence relation on A.

Solution Let a,a′,a′′ ∈ A.

[ρ is reflexive] Clearly, f (a) σ f (a) (since σ is reflexive), that is, a ρ a.

[ρ is symmetric] Also, a ρ a′ implies f (a) σ f (a′), that is, f (a′) σ f (a) (since σ is symmetric), that is,

a′ ρ a.

[ρ is transitive] Finally, a ρ a′ and a′ ρ a′′ imply f (a) σ f (a′) and f (a′) σ f (a′′), that is, f (a) σ f (a′′) (since

σ is transitive), that is, a ρ a′′.

(b) Define a map f̄ : A/ρ → B/σ as [a]ρ 7→ [ f (a)]σ . Prove that f̄ is well-defined.

Solution Suppose [a]ρ = [a′]ρ , that is, a ρ a′, that is, f (a) σ f (a′), that is, [ f (a)]σ = [ f (a′)]σ .

[The question of well-defined-ness arises here, because the value of the function is defined in terms of a

representative of a class. Thus, we needed to show that irrespective of the choice of the representative, we

get the same value for the function. The assignment g : Z5 → Z6 taking [a]5 7→ [a]6 is not well-defined. For

example, [0]5 = [5]5, but [0]6 6= [5]6, that is, we get different values when we use different representatives of the

same class in the argument.]

(c) Prove that f̄ is injective.

Solution Suppose f̄ ([a]ρ) = f̄ ([a′]ρ), that is, [ f (a)]σ = [ f (a′)]σ , that is, f (a) σ f (a′), that is, a ρ a′, that is, [a]ρ = [a′]ρ .

So f̄ is injective.

(d) Prove or disprove: If f is a bijection, then so also is f̄ .

Solution This is true. By Part (c), f̄ is injective. On the other hand, take any [b]σ ∈ B/σ . Since f is surjective, we have

b = f (a) for some a ∈ A. But then f̄ ([a]ρ) = [ f (a)]σ = [b]σ , that is, f̄ is surjective too.

[Note that, we never used the fact that f is injective. Indeed, f̄ is bijective, whenever f is surjective.]

(e) Prove or disprove: If f̄ is a bijection, then so also is f .
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Solution This is false. Take A = {a,b,c}, B = {1,2} and σ = {(1,1),(2,2)}. Also define f as f (a) = f (b) = 1 and

f (c) = 2. Then ρ = {(a,a),(b,b),(a,b),(b,a),(c,c)}, that is, A/ρ = {{a,b},{c}}, B/σ = {{1},{2}}, and

f̄ ({a,b}) = {1} and f̄ ({c}) = {2}. Therefore, f̄ is a bijection, whereas f is not.

7. In this exercise, we plan to construct a well-ordering of A = N×N.

(a) First define a relation ρ on A as (a,b) ρ (c,d) if and only if a 6 c or b 6 d. Prove or disprove: ρ is a

well-ordering of A.

Solution No. Indeed, ρ is not at all a partial order, since it is not antisymmetric: we have both (1,2) ρ (2,1) and

(2,1) ρ (1,2), but (1,2) 6= (2,1).

(b) Next, define a relation σ on A as (a,b) σ (c,d) if and only if a 6 c and b 6 d. Prove or disprove: σ is

a well-ordering of A.

Solution No. One can easily check that σ is a partial order on A. However, it is not a total order (and hence cannot be a

well-ordering of A): the pairs (1,2) and (2,1) are, for example, not comparable.

(c) Finally, define a relation 6L on A as (a,b) 6L (c,d) if either (i) a < c or (ii) a = c and b 6 d. Prove

that, 6L is a partial order on A.

Solution By Condition (ii), (a,b)6L (a,b). Now suppose that (a,b)6L (c,d) and (c,d)6L (a,b). If a < c, we cannot

have (c,d)6L (a,b). Similarly, if c < a, we cannot have (a,b)6L (c,d). So a = c. But then b 6 d and d 6 b,

that is, b = d. Finally, suppose that (a,b)6L (c,d) and (c,d)6L (e, f ). Then a6 c and c6 e. If a < c or c < e,

then a < e. On the other hand, if a = c = e, we must have b 6 d and d 6 f . But then b 6 f .

(d) Prove that 6L is a total order on A.

Solution Take any (a,b) and (c,d) in A. If a < c, then (a,b)6L (c,d). If a > c, then (c,d)6L (a,b). Finally, suppose

that a = c. Since either b 6 d or d 6 b, we have either (a,b)6L (c,d) or (c,d)6L (a,b).

(e) Is A well-ordered under 6L ?

Solution Yes. Let S be a non-empty subset of A. Take X = {a ∈N | (a,b) ∈ A for some b ∈N}. Since S is non-empty,

X is non-empty too and contains a minimum element; call it x. For this x, let Y = {b ∈ N | (x,b) ∈ S}. Since

Y is a non-empty subset of N, it contains a minimum element; call it y. It is now an easy check that (x,y) is a

minimum element of S.

(f) Prove or disprove: An infinite subset of A may contain a maximum element.

Solution True. The infinite subset {(1,b) | b ∈ N}∪{(2,1)} of A contains the maximum element (2,1).

Note: The ordering 6L on N×N described in this exercise is called the lexicographic ordering, since this is

how you sort two-letter words in a dictionary. One can readily generalize this ordering to Nn for any n > 3.

8. Give an example of a poset A and a non-empty subset S of A such that S has lower bounds in A, but glb(S)
does not exist.

Solution Take A =Q under the standard 6 on rational numbers. Also take S = {x ∈Q | x2 > 2}. Every rational number

<
√

2 is a lower bound on S. Since
√

2 is irrational, glb(S) does not exist.

Another example: Take A to be the set of all irrational numbers between 1 and 5, and S to be the set of all

irrational numbers between 2 and 3.

A simpler (but synthetic) example: Take A = {a,b,c,d} and the relation on A as,

ρ = {(a,a),(a,c),(a,d),(b,b),(b,c),(b,d)(c,c),(d,d)}

The subset S = {c,d} of A has two lower bounds a and b, but these bounds are not comparable to one another.

9. Let C denote the set of complex numbers and Z[i] the subset {a+ ib | a,b ∈ Z} of C. Elements of Z[i] are

called Gaussian integers. For z = x+ iy ∈C, we denote by |z| the magnitude of z and by arg z the argument

of z. Thus, z =
√

x2 + y2 and arg z = tan−1 y
x
. We take arg z in the interval [0,2π).
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Define a relation ρ on C as follows. Take z1,z2 ∈ C. We say that z1 ρ z2 if and only if

either (i) |z1|< |z2|,
or (ii) |z1|= |z2| and arg z1 6 arg z2.

Also define a relation σ on C as z1 σ z2 if and only if |z1|= |z2|.
(a) Prove that ρ is a partial order on C.

Solution Let z,z1,z2,z3 ∈C. We have |z|= |z| and arg z 6 arg z, that is, z ρ z, that is, ρ is reflexive.

Then suppose z1 ρ z2 and z2 ρ z1. If |z1|< |z2|, we cannot have z2 ρ z1. Analogously, if |z2|< |z1|, we cannot

have z1 ρ z2. Therefore, |z1|= |z2|. In that case, arg z1 6 arg z2 and arg z2 6 arg z1, that is, arg z1 = arg z2. It

follows that z1 = z2, that is, ρ is antisymmetric.

Finally, let z1 ρ z2 and z2 ρ z3. This means |z1|6 |z2|6 |z3|. If |z1|< |z2| or |z2|< |z3|, then |z1|< |z3|, that is,

z1 ρ z3. If |z1|= |z2|= |z3|, we have arg z1 6 arg z2 6 arg z3, that is, again z1 ρ z3. Thus, ρ is transitive.

(b) Prove that ρ is a well-ordering of Z[i].

Solution Let S be a non-empty subset of Z[i]. Consider the set X = {|z|2 | z ∈ S}. X , being a non-empty subset of N,

contains a minimum element; call it n. Let Y = {z ∈ S | |z|2 = n}. Since the equation x2 +y2 = n can have only

finitely many solutions in integer values of x and y, the set Y is finite. It is also non-empty. Thus, Y contains a

minimum element; call it z. It is clear that this z is the minimum element of S with respect to ρ .

(c) Prove that σ is an equivalence relation on C.

Solution Let z,z1,z2,z3 ∈C. Since |z|= |z|, we have z σ z, that is, σ is reflexive.

Also z1 σ z2 implies |z1|= |z2|, that is, |z2|= |z1|, that is, z2 σ z1, that is, σ is symmetric.

Finally, z1 σ z2 and z2 σ z3 imply |z1|= |z2|= |z3|, that is, z1 σ z3, that is, σ is transitive too.

(d) What are the equivalence classes of σ? (Provide a geometric description.)

Solution Let z = x+ iy ∈ C with r =
√

x2 + y2. Then [z]σ consists precisely of all complex numbers whose absolute

values equal r, that is, [z]σ is the circle of radius r centered at the origin.

10. Let k ∈ N, S = {1,2, . . . ,k}, and A = P(S) \ {φ}, where P(S) denotes the power set of S, and φ denotes

the empty set. In other words, the set A comprises all non-empty subsets of {1,2, . . . ,k}. For each a ∈ A

denote by min(a) the smallest element of a (notice that here a is a set).

(a) Define a relation ρ on A as follows: a ρ b if and only if min(a) =min(b). Prove that ρ is an equivalence

relation on A.

Solution [Reflexive] For any a ∈ A we have min(a) = min(a).
[Symmetric] For any a,b ∈ A, if min(a) = min(b), then min(b) = min(a).
[Transitive] For any a,b,c ∈ A, if min(a) = min(b) and min(b) = min(c), then min(a) = min(c).

(b) What is the size of the quotient set A/ρ ?

Solution Any two non-empty subsets of S having the same minimum element are related. On the other hand, two subsets

of S having different minimum elements are not related. Therefore, each equivalence class of ρ has a one-to-one

correspondence with an element of S (the minimum element of every member in the class). Since S contains k

elements, there are exactly k equivalence classes, that is, the size of A/ρ is k.

(c) Define a relation σ on A as follows: a σ b if and only if either a = b or min(a) < min(b). Prove that,

σ is a partial order on A.

Solution [Reflexive] By definition, every element is related to itself.

[Antisymmetric] Take two elements a,b ∈ A. Suppose that a σ b and b σ a. If a 6= b, then by definition,

min(a)< min(b) and min(b)< min(a), which is impossible. So we must have a = b.

[Transitive] Suppose a σ b and b σ c for some a,b,c ∈ A. If a = b or b = c, then clearly a σ c. So suppose

that a 6= b and b 6= c. But then min(a)< min(b) and min(b)< min(c). This implies that min(a)< min(c), that

is, a σ c.
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(d) Is σ also a total order on A ?

Solution No! Take k > 2. The sets {1} and {1,2} are distinct, but have the same minimum element, and are, therefore,

not comparable.

11. Let A be a lattice with respect to a relation �. Prove that every non-empty finite subset of S has a least upper

bound and a greatest lower bound. In particular, every finite lattice is complete.

Solution Let S be a non-empty finite subset of A with |S|= n. We prove by induction on n that lub(S) exists. A proof for

the existence of glb(S) proceeds analogously.

Since S 6= /0, we have n > 1. For n = 1,2, the assertion about the existence of lub(S) is obvious. So

take n > 3, and assume that every (n− 1)- and (n− 2)-element subset of A has a least upper bound. Take

S = {a1,a2, . . . ,an} ⊆ A. Since A is a lattice, b = lub(an−1,an) exists. Let T = {a1,a2, . . . ,an−2,b}. By the

induction hypothesis, T has a least upper bound (T has size n−1 or n−2).

Let US (resp. UT ) be the set of all upper bounds of S (resp. T ). We first claim that Us =UT . For the proof, first

take u ∈US. Then ai � u for all i = 1,2, . . . ,n. In particular, an−1 � u and an � u. Since b = lub(an−1,an), we

have b � u, that is, u ∈ UT . Conversely, if u ∈ UT , then ai � u for all i = 1,2, . . . ,n− 2, and b � u. Since b is

an upper bound of both an−1 and an, we also have an−1 � b and an � b. By transitivity, an−1 � u and an � u.

Thus u ∈US.

Since T has a least upper bound, UT is non-empty and contains the unique minimum element lub(T ). Since

US =UT , the same conclusions apply to S as well. It therefore follows that lub(S) = lub(T ).

(Remark: The above result applies only to finite subsets of A. Infinite subsets may have no least upper bounds

and/or no greatest lower bounds. For example, consider the divisibility lattice on N. The lcm of any finite (and

non-zero) number of elements exists, but the lcm of an infinite number of (distinct) elements does not exist.)

Additional Exercises

12. Let f : A → B be a function. Prove the following assertions.

(a) S ⊆ f−1( f (S)) for every S ⊆ A. Give an example where the inclusion is proper.

(b) f is injective if and only if S = f−1( f (S)) for every S ⊆ A.

(c) f ( f−1(T ))⊆ T for every T ⊆ B. Give an example where the inclusion is proper.

(d) f is surjective if and only if f ( f−1(T )) = T for every T ⊆ B.

(e) f ( f−1( f (S))) = f (S) for all S ⊆ A.

(f) f−1( f ( f−1(T ))) = f−1(T ) for all T ⊆ B.

13. Let f : A → B and g : B →C be functions.

(a) Prove that if the function g◦ f : A →C is injective, then f is injective.

(b) Give an example in which g◦ f is injective, but g is not injective.

(c) Prove that if g◦ f is surjective, then g is surjective.

(d) Give an example in which g◦ f is surjective, but f is not surjective.

14. A function f : Z→ Z is called nilpotent if for some n ∈ N we have f n(a) = 0 for all a ∈ Z.

(a) Give an example of a non-constant nilpotent function.

(b) Prove or disprove: The function f (a) = ⌊|a|/2⌋ is nilpotent.

15. A function f : R → R is called monotonic increasing if f (a) 6 f (b) whenever a 6 b. It is called strictly

monotonic increasing if f (a) < f (b) whenever a < b. One can define monotonic decreasing and strictly

monotonic decreasing functions in analogous ways.

(a) Prove that a strictly monotonic increasing function is injective.

(b) Demonstrate that an injective function R→ R need not be strictly increasing or strictly decreasing.

(c) Prove that a continuous injective function R→ R is either strictly increasing or strictly decreasing.

16. Let A be the set of all functions R → R. Define relations ρ,σ ,τ on A as follows: (i) f ρ g if and only if

f (a) 6 g(a) for all a ∈ R; (ii) f σ g if and only if f (0) 6 g(0); (iii) f τ g if and only if f (0) = g(0).
Argue which of the relations ρ,σ ,τ is/are equivalence relation(s). Argue which is/are partial order(s).
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17. Let ρ be a relation on a set A. Define ρ−1 = {(b,a) | (a,b)∈ ρ}. Also for two relations ρ,σ on A, define the

composite relation ρ ◦σ as (a,c) ∈ ρ ◦σ if and only if there exists b ∈ A such that (a,b) ∈ ρ and (b,c) ∈ σ .

Prove the following assertions.

(a) ρ is both symmetric and antisymmetric if and only if ρ ⊆ {(a,a) | a ∈ A}.

(b) ρ is transitive if and only if ρ ◦ρ = ρ .

(c) If ρ is non-empty, then ρ is an equivalence relation if and only if ρ−1 ◦ρ = ρ .

(d) ρ is a partial order if and only if ρ−1 is a partial order.

18. Let A be the set of all non-empty finite subsets of Z. Define a relation ρ on A as: U ρ V if and only if

min(U) = min(V ). Also define the relation σ on A as: U σ V if and only if min(U) 6 min(V ). Finally,

define a relation τ on A as: U τ V if and only if either U =V or min(U)< min(V ).

(a) Prove that ρ is an equivalence relation on A.

(b) Identify good representatives from the equivalence classes of ρ .

(c) Define a bijection between the quotient set A/ρ and Z.

(d) Prove or disprove: σ is a partial order on A.

(e) Prove or disprove: τ is a partial order on A.

19. Let f : A → B be a function, ρ an equivalence relation on A, and σ an equivalence relation on B. Suppose

further that if f (a) σ f (a′), then a ρ a′. Show by an explicit example that the association f̄ : A/ρ → B/σ

given by f̄ ([a]ρ) = [ f (a)]σ is not necessarily a function.

20. Let m,n be positive integers. Prove that the assignment f : Zm → Zn taking [a]m 7→ [a]n is well-defined if

and only if m is an integral multiple of n.

* 21. [Genesis of real numbers] An infinite sequence a1,a2,a3, . . . of rational numbers is called a Cauchy

sequence if given any real ε > 0 there exists an N ∈ N such that |am − an| < ε for all m,n > N. Let C

denote the set of all Cauchy sequences of rational numbers.

(a) Prove that any Cauchy sequence converges, that is, has a limit.

(b) Establish that the limit of a Cauchy sequence may be irrational.

(c) Define a relation ρ on C as S ρ T if and only if limS = limT . Prove that ρ is an equivalence relation.

(d) Convince yourself that C/ρ is essentially the set R of real numbers. This process of the generation of

R from Q is called completion. Another method of defining R uses Dedekind cuts.

22. Let ρ be a total order on A. We call ρ a well-ordering of A if every non-empty subset of A contains a least

element. Which of the following sets is/are well-ordered under the standard 6 relation: N, Z, Q+, R?

23. A string is a finite ordered sequence of symbols from a finite alphabet. We start with a predetermined total

ordering of the alphabet, and then define the usual dictionary order on strings. Prove that this dictionary

order (called lexicographic ordering) is a total ordering. Is it also a well-ordering?

24. Define a relation 6DL on A = N×N as follows. Take (a,b),(c,d) ∈ A and call (a,b)6DL (c,d) if either (i)

a+b < c+d, or (ii) a+b = c+d and a 6 c.

(a) Prove that 6DL is a partial order on A.

(b) Prove that 6DL is a total order on A.

(c) Is A well-ordered by 6DL?

(d) Prove or disprove: An infinite subset of A may contain a maximum element.

Note: The ordering 6DL on A is called the degree-lexicographic ordering. Identify (a,b) ∈ A with the

monomial XaY b. First, order monomials with respect to their degrees. For two monomials of the same

degree, apply lexicographic ordering. For example, XY 3 6DL Y 5 and XY 3 6DL X2Y 2.

25. Generalize the degree-lexicographic ordering on Nn for any fixed n > 3.

26. Consider the following relation ρ on the set Q+ of all positive rational numbers. Take a/b,c/d ∈ Q+ with

gcd(a,b) = gcd(c,d) = 1. Call (a/b)ρ (c/d) if and only if either (i) a+b < c+d or (ii) a+b = c+d and

a 6 c. Prove that ρ is a total order. Prove that Q+ is well-ordered by ρ .

27. Construct a well-ordering of Q.
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28. Let A be the set of all functions N→ N. For f ,g ∈ A, define f 6 g if and only if f (n)6 g(n) for all n ∈ N.

prove that 6 is a partial order on A. Is 6 also a total order?

29. Let A be the set of all functions N0 → R+.

(a) Define a relation Θ on A as f Θ g if and only if f = Θ(g). Prove that Θ is an equivalence relation.

(b) Define a relation O on A as f O g if and only if f = O(g). Argue that O is not a partial order.

Define a relation O on A/Θ as [ f ] O [g] if and only if f = O(g).

(c) Establish that the relation O is well-defined.

(d) Prove that O is a partial order on A/Θ.

(e) Prove or disprove: O is a total order on A/Θ.

(f) Prove or disprove: A/Θ is a lattice under O.

30. Let k be a fixed positive integer. Define a relation 6 on A = Zk as: (a1,a2, . . . ,ak) 6 (b1,b2, . . . ,bk) if and

only if ai 6 bi for all i = 1,2, . . . ,k. Prove that A is a lattice under this relation.

31. Let A be a poset under the relation ρ . Prove or disprove:

(a) If ρ is a total order, then A is a lattice.

(b) If A is a lattice, then ρ is a total order.

32. Let A be a poset. We call A a meet-semilattice (resp. join-semilattice) if glb(a,b) (resp. lub(a,b)) exists for

all a,b ∈ A. A is a lattice if and only if it is both a meet-semilattice and a join-semilattice. Give examples of:

(a) A meet-semilattice which is not a lattice.

(b) A join-semilattice which is not a lattice.
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