Sets, Relations, and Functions

1. Let $A, B, C \in \mathcal{U}$ are three arbitrary sets such that, $A \cup B = A \cup C$ and $A \cap B = A \cap C$. Prove that, B = C.

 $\begin{array}{l} \textit{Solution } B = B \cap (A \cup B) = B \cap (A \cup C) = (B \cap A) \cup (B \cap C) = (A \cap C) \cup (B \cap C) = (A \cup B) \cap C = (A \cup C) \cap C = C. \\ B = B \cup (A \cap B) = B \cup (A \cap C) = (B \cup A) \cap (B \cup C) = (A \cup C) \cap (B \cup C) = (A \cap B) \cup C = (A \cap C) \cup C = C. \end{array}$

- 2. Define a relation ρ on \mathbb{N} as $a \rho b$ if and only if a has the same set of prime divisors as b. For example, 5 is related to $25 = 5^2$, $12 = 2^2 \times 3$ is related to $54 = 2 \times 3^3$, but 12 is not related to $16 = 2^4$, nor to $180 = 2^2 \times 3^2 \times 5$.
 - (a) Prove that ρ is a equivalence relation on \mathbb{N} .
- Solution [Reflexive] a has the same set of prime divisors as itself, that is, ρ is reflexive.
 [Symmetric] If a has the same set of prime divisors as b, then b too has the same set of prime divisors as a, that is, ρ is symmetric.
 [Transitive] If a and b have the same set of prime divisors, and b and c have the same set of prime divisors, then a and c too have the same set of prime divisors, that is, ρ is transitive.
 - (b) Find the equivalence classes \mathbb{N}/ρ .

Solution For all prime numbers, $p_1, p_2, \dots, p_k, \dots$, we have, $[p_k] = \{p_k^i \mid i \ge 1\}$

For all composite numbers, $q = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$, we have, $[p_1 p_2 \cdots p_k] = \{q \mid p_i > 1, e_i > 0 \text{ where } 1 \leq i \leq k\}$

(c) A non-zero integer is called *square-free* if it is not divisible by the square of a prime number. Prove that, each equivalence class in \mathbb{N}/ρ contains a unique square-free integer, and that these unique square-free integers are different in distinct equivalence classes.

- Solution Let $a \in \mathbb{N}$ have the prime factorization $a = p_1^{e_1} \cdots p_t^{e_t}$ with $t \ge 0$, pairwise distinct primes p_1, \cdots, p_t and each $e_i > 0$. But, then *a* is related to the square-free integer $p_1 \cdots p_t$. No other square-free integer can have the same prime divisors as $p_1 \cdots p_t$. Thus, [a] contains a unique square-free integer. Also if $[a] \ne [b]$, we have $[a] \cap [b] = \phi$ (ρ is an equivalence relation and so the equivalence classes partition \mathbb{N}), that is, the square-free integers in [a] and [b] are distinct.
- **3.** Define two relations ρ and σ on \mathbb{R} as follows.
 - (a) $a \rho b$ if and only if $a b \in \mathbb{Q}$
 - **(b)** $a \sigma b$ if and only if $a b \in \mathbb{Z}$

Prove that, ρ and σ are equivalence relations on \mathbb{R} . Also, find the equivalence classes (with representatives).

- Solution [Reflexive] $0 = \frac{0}{1}$ is a rational (or itself an integer). [Symmetric] If a - b is rational (or integer), then b - a = -(a - b) is rational (or integer) too. [Transitive] If a - b and b - c are rational (or integer), then a - c = (a - b) + (b - c) is again rational (or integer).
 - (a) Equivalence classes [x] of \mathbb{R}/ρ is of the form, $[x] = \{x + r \mid r \in \mathbb{Q}\}$
 - (b) Equivalence classes [y] of \mathbb{R}/σ is of the form, $[y] = \{y+s \mid s \in \mathbb{Z}\}$
- 4. [*Genesis of rational numbers*] Define a relation ρ on A = Z × (Z \ {0}) as (a,b) ρ (c,d) if and only if ad = bc. Prove that ρ is an equivalence relation. Argue that A/ρ is essentially the set Q of rational numbers. In abstract algebra, we say that Q is the field of fractions of the integral domain Z. The equivalence class [(a,b)] is conventionally denoted by ^a/_b.

Solution [Reflexive] $(a,b) \rho (a,b)$, since ab = ba. [Symmetric] $(a,b) \rho (c,d)$ implies $(c,d) \rho (a,b)$, since $ad = bc \Rightarrow cb = da$. [Transitive] If $(a,b) \rho (c,d)$ iff ad = bc, and $(c,d) \rho (e,f)$ iff cf = de, then we get, $(a,b) \rho (e,f)$, since $ad = bc \Rightarrow adf = bcf \Rightarrow adf = bde \Rightarrow af = be (as d \neq 0)$.

Equivalence classes of A/ρ are of the form, $[(a,b)] = \begin{bmatrix} a \\ b \end{bmatrix} = \{ \frac{na}{nb} \mid n \in \mathbb{N} \}$ and denotes the set \mathbb{Q} of rationals.

- **5.** For a function $f : A \to B$, define a function $\mathscr{F} : \mathscr{P}(A) \to \mathscr{P}(B)$ as $\mathscr{F}(S) = f(S)$ for all $S \subseteq A$, where $\mathscr{P}(A)$ and $\mathscr{P}(B)$ denote the power sets of A and B, respectively. Prove the following.
 - (a) \mathscr{F} is injective if and only if f is injective.

Solution Note that $f(S) = \bigcup_{s \in S} f(s) \subseteq B$, where $S \subseteq A$.

[\Leftarrow] If *f* is injective, then we know that $f(a_1) = f(a_2) \Rightarrow a_1 = a_2$, $(a_1, a_2 \in A)$. So, for $S_1, S_2 \subseteq A$, since we have $f(S_1) = \bigcup_{a_1 \in S_1} f(a_1)$ and $f(S_2) = \bigcup_{a_2 \in S_2} f(a_2)$, we have, $f(S_1) = f(S_2) \Rightarrow S_1 = S_2$. For $S_1, S_2 \in \mathscr{P}(S)$ and $S_1, S_2 \subseteq A$, we can say, $\mathscr{F}(S_1) = \mathscr{F}(S_2) \Rightarrow f(S_1) = f(S_2) \Rightarrow S_1 = S_2$. This concludes that \mathscr{F} is injective.

 $[\Rightarrow]$ If \mathscr{F} is injective, then for $S_1, S_2 \in \mathscr{P}(S)$ and $S_1, S_2 \subseteq A$, we can say, $\mathscr{F}(S_1) = \mathscr{F}(S_2) \Rightarrow S_1 = S_2$. Since $\mathscr{F}(S) = f(S)$ for all $S \subseteq A$, we can say, $f(S_1) = f(S_2) \Rightarrow S_1 = S_2$. Therefore, for $s_1 \in S_1$ and $s_2 \in S_2$, we have $f(s_1) = f(s_2) \Rightarrow s_1 = s_2$. This concludes that f is injective.

- (b) \mathscr{F} is surjective if and only if f is surjective.
- Solution $[\Leftarrow]$ If f is surjective, then we know that for all $b \in B$, there exists $a \in A$, such that f(a) = b. Therefore, for all $S_2 \subseteq B$, there exists $S_1 \subseteq A$, such that $f(S_1) = S_2$. It follows that for all $S_2 \in \mathscr{P}(B)$, there exists $S_1 \in \mathscr{P}(A)$, such that $\mathscr{F}(S_1) = S_2$. This concludes that \mathscr{F} is surjective.

 $[\Rightarrow]$ If \mathscr{F} is surjective, then we know that for all $S_2 \in \mathscr{P}(B)$, there exists $S_1 \in \mathscr{P}(A)$, such that $\mathscr{F}(S_1) = S_2$. As $\mathscr{F}(S) = f(S)$ for all $S \subseteq A$, it implies that for all $S_2 \subseteq B$, there exists $S_1 \subseteq A$, such that $f(S_1) = S_2$. It follows that for all $b \in S_2$, there exists $a \in S_1$, such that f(a) = b. This concludes that f is surjective.

(c) \mathscr{F} is bijective if and only if f is bijective.

Solution The above parts (a) and (b) together prove this.

- 6. Let $f : A \to B$ be a function and σ an equivalence relation on *B*. Define a relation ρ on *A* as: $a \rho a'$ if and only if $f(a) \sigma f(a')$.
 - (a) Prove that ρ is an equivalence relation on A.
- Solution Let $a, a', a'' \in A$. [ρ is reflexive] Clearly, $f(a) \sigma f(a)$ (since σ is reflexive), that is, $a \rho a$. [ρ is symmetric] Also, $a \rho a'$ implies $f(a) \sigma f(a')$, that is, $f(a') \sigma f(a)$ (since σ is symmetric), that is, $a' \rho a$. [ρ is transitive] Finally, $a \rho a'$ and $a' \rho a''$ imply $f(a) \sigma f(a')$ and $f(a') \sigma f(a'')$, that is, $f(a) \sigma f(a'')$ (since σ is transitive), that is, $a \rho a''$.
 - (b) Define a map $\overline{f}: A/\rho \to B/\sigma$ as $[a]_{\rho} \mapsto [f(a)]_{\sigma}$. Prove that \overline{f} is well-defined.

Solution Suppose $[a]_{\rho} = [a']_{\rho}$, that is, $a \rho a'$, that is, $f(a) \sigma f(a')$, that is, $[f(a)]_{\sigma} = [f(a')]_{\sigma}$.

[The question of well-defined-ness arises here, because the value of the function is defined in terms of a representative of a class. Thus, we needed to show that irrespective of the choice of the representative, we get the same value for the function. The assignment $g : \mathbb{Z}_5 \to \mathbb{Z}_6$ taking $[a]_5 \mapsto [a]_6$ is not well-defined. For example, $[0]_5 = [5]_5$, but $[0]_6 \neq [5]_6$, that is, we get different values when we use different representatives of the same class in the argument.]

- (c) Prove that \overline{f} is injective.
- Solution Suppose $\bar{f}([a]_{\rho}) = \bar{f}([a']_{\rho})$, that is, $[f(a)]_{\sigma} = [f(a')]_{\sigma}$, that is, $f(a) \sigma f(a')$, that is, $a \rho a'$, that is, $[a]_{\rho} = [a']_{\rho}$. So \bar{f} is injective.
 - (d) Prove or disprove: If f is a bijection, then so also is \overline{f} .
- Solution This is true. By Part (c), \bar{f} is injective. On the other hand, take any $[b]_{\sigma} \in B/\sigma$. Since f is surjective, we have b = f(a) for some $a \in A$. But then $\bar{f}([a]_{\rho}) = [f(a)]_{\sigma} = [b]_{\sigma}$, that is, \bar{f} is surjective too.

[Note that, we never used the fact that f is injective. Indeed, \overline{f} is bijective, whenever f is surjective.]

(e) Prove or disprove: If \overline{f} is a bijection, then so also is f.

- Solution This is false. Take $A = \{a, b, c\}$, $B = \{1, 2\}$ and $\sigma = \{(1, 1), (2, 2)\}$. Also define f as f(a) = f(b) = 1 and f(c) = 2. Then $\rho = \{(a, a), (b, b), (a, b), (b, a), (c, c)\}$, that is, $A/\rho = \{\{a, b\}, \{c\}\}, B/\sigma = \{\{1\}, \{2\}\}$, and $\bar{f}(\{a, b\}) = \{1\}$ and $\bar{f}(\{c\}) = \{2\}$. Therefore, \bar{f} is a bijection, whereas f is not.
- 7. In this exercise, we plan to construct a well-ordering of $A = \mathbb{N} \times \mathbb{N}$.

(a) First define a relation ρ on A as $(a,b) \rho(c,d)$ if and only if $a \leq c$ or $b \leq d$. Prove or disprove: ρ is a well-ordering of A.

Solution No. Indeed, ρ is not at all a partial order, since it is not antisymmetric: we have both (1,2) ρ (2,1) and (2,1) ρ (1,2), but (1,2) \neq (2,1).

(b) Next, define a relation σ on *A* as $(a,b) \sigma(c,d)$ if and only if $a \le c$ and $b \le d$. Prove or disprove: σ is a well-ordering of *A*.

Solution No. One can easily check that σ is a partial order on *A*. However, it is not a total order (and hence cannot be a well-ordering of *A*): the pairs (1,2) and (2,1) are, for example, not comparable.

(c) Finally, define a relation \leq_L on *A* as $(a,b) \leq_L (c,d)$ if either (i) a < c or (ii) a = c and $b \leq d$. Prove that, \leq_L is a partial order on *A*.

- Solution By Condition (ii), $(a,b) \leq_L (a,b)$. Now suppose that $(a,b) \leq_L (c,d)$ and $(c,d) \leq_L (a,b)$. If a < c, we cannot have $(c,d) \leq_L (a,b)$. Similarly, if c < a, we cannot have $(a,b) \leq_L (c,d)$. So a = c. But then $b \leq d$ and $d \leq b$, that is, b = d. Finally, suppose that $(a,b) \leq_L (c,d)$ and $(c,d) \leq_L (e,f)$. Then $a \leq c$ and $c \leq e$. If a < c or c < e, then a < e. On the other hand, if a = c = e, we must have $b \leq d$ and $d \leq f$. But then $b \leq f$.
 - (d) Prove that \leq_L is a total order on *A*.
- Solution Take any (a,b) and (c,d) in A. If a < c, then $(a,b) \leq_L (c,d)$. If a > c, then $(c,d) \leq_L (a,b)$. Finally, suppose that a = c. Since either $b \leq d$ or $d \leq b$, we have either $(a,b) \leq_L (c,d)$ or $(c,d) \leq_L (a,b)$.
 - (e) Is A well-ordered under \leq_L ?
- Solution Yes. Let *S* be a non-empty subset of *A*. Take $X = \{a \in \mathbb{N} \mid (a,b) \in A \text{ for some } b \in \mathbb{N}\}$. Since *S* is non-empty, *X* is non-empty too and contains a minimum element; call it *x*. For this *x*, let $Y = \{b \in \mathbb{N} \mid (x,b) \in S\}$. Since *Y* is a non-empty subset of \mathbb{N} , it contains a minimum element; call it *y*. It is now an easy check that (x, y) is a minimum element of *S*.
 - (f) Prove or disprove: An infinite subset of A may contain a maximum element.

Solution True. The infinite subset $\{(1,b) \mid b \in N\} \cup \{(2,1)\}$ of A contains the maximum element (2,1).

Note: The ordering \leq_L on $\mathbb{N} \times \mathbb{N}$ described in this exercise is called the lexicographic ordering, since this is how you sort two-letter words in a dictionary. One can readily generalize this ordering to \mathbb{N}^n for any n > 3.

- 8. Give an example of a poset A and a non-empty subset S of A such that S has lower bounds in A, but glb(S) does not exist.
- Solution Take $A = \mathbb{Q}$ under the standard \leq on rational numbers. Also take $S = \{x \in \mathbb{Q} \mid x^2 > 2\}$. Every rational number $< \sqrt{2}$ is a lower bound on S. Since $\sqrt{2}$ is irrational, glb(S) does not exist.

Another example: Take *A* to be the set of all irrational numbers between 1 and 5, and *S* to be the set of all irrational numbers between 2 and 3.

A simpler (but synthetic) example: Take $A = \{a, b, c, d\}$ and the relation on A as,

 $\rho = \{(a,a), (a,c), (a,d), (b,b), (b,c), (b,d)(c,c), (d,d)\}$

The subset $S = \{c, d\}$ of A has two lower bounds a and b, but these bounds are not comparable to one another.

9. Let \mathbb{C} denote the set of complex numbers and $\mathbb{Z}[i]$ the subset $\{a + ib \mid a, b \in \mathbb{Z}\}$ of \mathbb{C} . Elements of $\mathbb{Z}[i]$ are called *Gaussian integers*. For $z = x + iy \in \mathbb{C}$, we denote by |z| the magnitude of z and by arg z the argument of z. Thus, $z = \sqrt{x^2 + y^2}$ and arg $z = \tan^{-1} \frac{y}{x}$. We take arg z in the interval $[0, 2\pi)$.

Define a relation ρ on \mathbb{C} as follows. Take $z_1, z_2 \in \mathbb{C}$. We say that $z_1 \rho z_2$ if and only if

either (i) $|z_1| < |z_2|$,

or (ii) $|z_1| = |z_2|$ and arg $z_1 \leq \arg z_2$.

Also define a relation σ on \mathbb{C} as $z_1 \sigma z_2$ if and only if $|z_1| = |z_2|$.

(a) Prove that ρ is a partial order on \mathbb{C} .

Solution Let $z, z_1, z_2, z_3 \in \mathbb{C}$. We have |z| = |z| and arg $z \leq \arg z$, that is, $z \rho z$, that is, ρ is reflexive.

Then suppose $z_1 \rho z_2$ and $z_2 \rho z_1$. If $|z_1| < |z_2|$, we cannot have $z_2 \rho z_1$. Analogously, if $|z_2| < |z_1|$, we cannot have $z_1 \rho z_2$. Therefore, $|z_1| = |z_2|$. In that case, arg $z_1 \leq \arg z_2$ and arg $z_2 \leq \arg z_1$, that is, arg $z_1 = \arg z_2$. It follows that $z_1 = z_2$, that is, ρ is antisymmetric.

Finally, let $z_1 \rho z_2$ and $z_2 \rho z_3$. This means $|z_1| \leq |z_2| \leq |z_3|$. If $|z_1| < |z_2|$ or $|z_2| < |z_3|$, then $|z_1| < |z_3|$, that is, $z_1 \rho z_3$. If $|z_1| = |z_2| = |z_3|$, we have arg $z_1 \leq \arg z_2 \leq \arg z_3$, that is, again $z_1 \rho z_3$. Thus, ρ is transitive.

- (b) Prove that ρ is a well-ordering of $\mathbb{Z}[i]$.
- Solution Let S be a non-empty subset of $\mathbb{Z}[i]$. Consider the set $X = \{|z|^2 \mid z \in S\}$. X, being a non-empty subset of \mathbb{N} , contains a minimum element; call it n. Let $Y = \{z \in S \mid |z|^2 = n\}$. Since the equation $x^2 + y^2 = n$ can have only finitely many solutions in integer values of x and y, the set Y is finite. It is also non-empty. Thus, Y contains a minimum element; call it z. It is clear that this z is the minimum element of S with respect to ρ .
 - (c) Prove that σ is an equivalence relation on \mathbb{C} .

Solution Let $z, z_1, z_2, z_3 \in \mathbb{C}$. Since |z| = |z|, we have $z \sigma z$, that is, σ is reflexive.

Also $z_1 \sigma z_2$ implies $|z_1| = |z_2|$, that is, $|z_2| = |z_1|$, that is, $z_2 \sigma z_1$, that is, σ is symmetric.

Finally, $z_1 \sigma z_2$ and $z_2 \sigma z_3$ imply $|z_1| = |z_2| = |z_3|$, that is, $z_1 \sigma z_3$, that is, σ is transitive too.

(d) What are the equivalence classes of σ ? (Provide a geometric description.)

Solution Let $z = x + iy \in \mathbb{C}$ with $r = \sqrt{x^2 + y^2}$. Then $[z]_{\sigma}$ consists precisely of all complex numbers whose absolute values equal *r*, that is, $[z]_{\sigma}$ is the circle of radius *r* centered at the origin.

10. Let $k \in \mathbb{N}$, $S = \{1, 2, ..., k\}$, and $A = \mathscr{P}(S) \setminus \{\phi\}$, where $\mathscr{P}(S)$ denotes the power set of *S*, and ϕ denotes the empty set. In other words, the set *A* comprises all non-empty subsets of $\{1, 2, ..., k\}$. For each $a \in A$ denote by min(a) the smallest element of *a* (notice that here *a* is a set).

(a) Define a relation ρ on A as follows: $a \rho b$ if and only if min(a) = min(b). Prove that ρ is an equivalence relation on A.

- Solution [Reflexive]For any $a \in A$ we have min(a) = min(a).[Symmetric]For any $a, b \in A$, if min(a) = min(b), then min(b) = min(a).[Transitive]For any $a, b, c \in A$, if min(a) = min(b) and min(b) = min(c), then min(a) = min(c).
 - (b) What is the size of the quotient set A/ρ ?
- Solution Any two non-empty subsets of S having the same minimum element are related. On the other hand, two subsets of S having different minimum elements are not related. Therefore, each equivalence class of ρ has a one-to-one correspondence with an element of S (the minimum element of every member in the class). Since S contains k elements, there are exactly k equivalence classes, that is, the size of A/ρ is k.

(c) Define a relation σ on A as follows: $a \sigma b$ if and only if either a = b or min(a) < min(b). Prove that, σ is a partial order on A.

Solution [Reflexive] By definition, every element is related to itself.

[Antisymmetric] Take two elements $a, b \in A$. Suppose that $a \sigma b$ and $b \sigma a$. If $a \neq b$, then by definition, min(a) < min(b) and min(b) < min(a), which is impossible. So we must have a = b. [Transitive] Suppose $a \sigma b$ and $b \sigma c$ for some $a, b, c \in A$. If a = b or b = c, then clearly $a \sigma c$. So suppose

that $a \neq b$ and $b \neq c$. But then min(a) < min(b) and min(b) < min(c). This implies that min(a) < min(c), that is, $a \sigma c$.

- (d) Is σ also a total order on A?
- Solution No! Take k > 2. The sets {1} and {1,2} are distinct, but have the same minimum element, and are, therefore, not comparable.
- 11. Let A be a lattice with respect to a relation \leq . Prove that every non-empty finite subset of S has a least upper bound and a greatest lower bound. In particular, every finite lattice is complete.
 - Solution Let S be a non-empty finite subset of A with |S| = n. We prove by induction on n that lub(S) exists. A proof for the existence of glb(S) proceeds analogously.

Since $S \neq \emptyset$, we have $n \ge 1$. For n = 1, 2, the assertion about the existence of lub(S) is obvious. So take $n \ge 3$, and assume that every (n-1)- and (n-2)-element subset of A has a least upper bound. Take $S = \{a_1, a_2, \ldots, a_n\} \subseteq A$. Since A is a lattice, $b = lub(a_{n-1}, a_n)$ exists. Let $T = \{a_1, a_2, \ldots, a_{n-2}, b\}$. By the induction hypothesis, T has a least upper bound (T has size n-1 or n-2).

Let U_S (resp. U_T) be the set of all upper bounds of S (resp. T). We first claim that $U_s = U_T$. For the proof, first take $u \in U_S$. Then $a_i \leq u$ for all i = 1, 2, ..., n. In particular, $a_{n-1} \leq u$ and $a_n \leq u$. Since $b = lub(a_{n-1}, a_n)$, we have $b \leq u$, that is, $u \in U_T$. Conversely, if $u \in U_T$, then $a_i \leq u$ for all i = 1, 2, ..., n-2, and $b \leq u$. Since b is an upper bound of both a_{n-1} and a_n , we also have $a_{n-1} \leq b$ and $a_n \leq b$. By transitivity, $a_{n-1} \leq u$ and $a_n \leq u$. Thus $u \in U_S$.

Since *T* has a least upper bound, U_T is non-empty and contains the unique minimum element lub(T). Since $U_S = U_T$, the same conclusions apply to *S* as well. It therefore follows that lub(S) = lub(T).

(**Remark:** The above result applies only to finite subsets of *A*. Infinite subsets may have no least upper bounds and/or no greatest lower bounds. For example, consider the divisibility lattice on \mathbb{N} . The lcm of any finite (and non-zero) number of elements exists, but the lcm of an infinite number of (distinct) elements does not exist.)

Additional Exercises

12. Let $f : A \rightarrow B$ be a function. Prove the following assertions.

- (a) $S \subseteq f^{-1}(f(S))$ for every $S \subseteq A$. Give an example where the inclusion is proper.
- (b) f is injective if and only if $S = f^{-1}(f(S))$ for every $S \subseteq A$.
- (c) $f(f^{-1}(T)) \subseteq T$ for every $T \subseteq B$. Give an example where the inclusion is proper.
- (d) f is surjective if and only if $f(f^{-1}(T)) = T$ for every $T \subseteq B$.
- (e) $f(f^{-1}(f(S))) = f(S)$ for all $S \subseteq A$.
- (f) $f^{-1}(f(f^{-1}(T))) = f^{-1}(T)$ for all $T \subseteq B$.

13. Let $f : A \to B$ and $g : B \to C$ be functions.

- (a) Prove that if the function $g \circ f : A \to C$ is injective, then f is injective.
- (b) Give an example in which $g \circ f$ is injective, but g is not injective.
- (c) Prove that if $g \circ f$ is surjective, then g is surjective.
- (d) Give an example in which $g \circ f$ is surjective, but f is not surjective.
- **14.** A function $f : \mathbb{Z} \to \mathbb{Z}$ is called *nilpotent* if for some $n \in \mathbb{N}$ we have $f^n(a) = 0$ for all $a \in \mathbb{Z}$.
 - (a) Give an example of a non-constant nilpotent function.
 - (b) Prove or disprove: The function f(a) = ||a|/2| is nilpotent.
- **15.** A function $f : \mathbb{R} \to \mathbb{R}$ is called *monotonic increasing* if $f(a) \leq f(b)$ whenever $a \leq b$. It is called *strictly monotonic increasing* if f(a) < f(b) whenever a < b. One can define *monotonic decreasing* and *strictly monotonic decreasing* functions in analogous ways.
 - (a) Prove that a strictly monotonic increasing function is injective.
 - (b) Demonstrate that an injective function $\mathbb{R} \to \mathbb{R}$ need not be strictly increasing or strictly decreasing.
 - (c) Prove that a continuous injective function $\mathbb{R} \to \mathbb{R}$ is either strictly increasing or strictly decreasing.
- **16.** Let *A* be the set of all functions $\mathbb{R} \to \mathbb{R}$. Define relations ρ, σ, τ on *A* as follows: (i) $f \rho g$ if and only if $f(a) \leq g(a)$ for all $a \in \mathbb{R}$; (ii) $f \sigma g$ if and only if $f(0) \leq g(0)$; (iii) $f \tau g$ if and only if f(0) = g(0). Argue which of the relations ρ, σ, τ is/are equivalence relation(s). Argue which is/are partial order(s).

- **17.** Let ρ be a relation on a set *A*. Define $\rho^{-1} = \{(b,a) \mid (a,b) \in \rho\}$. Also for two relations ρ, σ on *A*, define the composite relation $\rho \circ \sigma$ as $(a,c) \in \rho \circ \sigma$ if and only if there exists $b \in A$ such that $(a,b) \in \rho$ and $(b,c) \in \sigma$. Prove the following assertions.
 - (a) ρ is both symmetric and antisymmetric if and only if $\rho \subseteq \{(a,a) \mid a \in A\}$.
 - (b) ρ is transitive if and only if $\rho \circ \rho = \rho$.
 - (c) If ρ is non-empty, then ρ is an equivalence relation if and only if $\rho^{-1} \circ \rho = \rho$.
 - (d) ρ is a partial order if and only if ρ^{-1} is a partial order.
- **18.** Let *A* be the set of all non-empty finite subsets of \mathbb{Z} . Define a relation ρ on *A* as: $U \rho V$ if and only if $\min(U) = \min(V)$. Also define the relation σ on *A* as: $U \sigma V$ if and only if $\min(U) \leq \min(V)$. Finally, define a relation τ on *A* as: $U \tau V$ if and only if either U = V or $\min(U) < \min(V)$.
 - (a) Prove that ρ is an equivalence relation on A.
 - (b) Identify good representatives from the equivalence classes of ρ .
 - (c) Define a bijection between the quotient set A/ρ and \mathbb{Z} .
 - (d) Prove or disprove: σ is a partial order on A.
 - (e) Prove or disprove: τ is a partial order on A.
- **19.** Let $f: A \to B$ be a function, ρ an equivalence relation on A, and σ an equivalence relation on B. Suppose further that if $f(a) \sigma f(a')$, then $a \rho a'$. Show by an explicit example that the association $\overline{f}: A/\rho \to B/\sigma$ given by $\overline{f}([a]_{\rho}) = [f(a)]_{\sigma}$ is not necessarily a function.
- **20.** Let m, n be positive integers. Prove that the assignment $f : \mathbb{Z}_m \to \mathbb{Z}_n$ taking $[a]_m \mapsto [a]_n$ is well-defined if and only if *m* is an integral multiple of *n*.
- * 21. [*Genesis of real numbers*] An infinite sequence $a_1, a_2, a_3, ...$ of rational numbers is called a *Cauchy sequence* if given any real $\varepsilon > 0$ there exists an $N \in \mathbb{N}$ such that $|a_m a_n| < \varepsilon$ for all $m, n \ge N$. Let C denote the set of all Cauchy sequences of rational numbers.
 - (a) Prove that any Cauchy sequence converges, that is, has a limit.
 - (b) Establish that the limit of a Cauchy sequence may be irrational.
 - (c) Define a relation ρ on C as $S \rho T$ if and only if $\lim S = \lim T$. Prove that ρ is an equivalence relation.
 - (d) Convince yourself that C/ρ is essentially the set \mathbb{R} of real numbers. This process of the generation of \mathbb{R} from \mathbb{Q} is called *completion*. Another method of defining \mathbb{R} uses *Dedekind cuts*.
 - **22.** Let ρ be a total order on *A*. We call ρ a *well-ordering* of *A* if every non-empty subset of *A* contains a least element. Which of the following sets is/are well-ordered under the standard \leq relation: $\mathbb{N}, \mathbb{Z}, \mathbb{Q}^+, \mathbb{R}$?
 - **23.** A *string* is a finite ordered sequence of symbols from a finite alphabet. We start with a predetermined total ordering of the alphabet, and then define the usual dictionary order on strings. Prove that this dictionary order (called *lexicographic ordering*) is a total ordering. Is it also a well-ordering?
 - **24.** Define a relation \leq_{DL} on $A = \mathbb{N} \times \mathbb{N}$ as follows. Take $(a,b), (c,d) \in A$ and call $(a,b) \leq_{DL} (c,d)$ if either (i) a+b < c+d, or (ii) a+b = c+d and $a \leq c$.
 - (a) Prove that \leq_{DL} is a partial order on *A*.
 - (b) Prove that \leq_{DL} is a total order on *A*.
 - (c) Is A well-ordered by \leq_{DL} ?
 - (d) Prove or disprove: An infinite subset of A may contain a maximum element.

Note: The ordering \leq_{DL} on *A* is called the *degree-lexicographic ordering*. Identify $(a,b) \in A$ with the monomial $X^a Y^b$. First, order monomials with respect to their degrees. For two monomials of the same degree, apply lexicographic ordering. For example, $XY^3 \leq_{DL} Y^5$ and $XY^3 \leq_{DL} X^2 Y^2$.

- **25.** Generalize the degree-lexicographic ordering on \mathbb{N}^n for any fixed $n \ge 3$.
- **26.** Consider the following relation ρ on the set \mathbb{Q}^+ of all positive rational numbers. Take $a/b, c/d \in \mathbb{Q}^+$ with gcd(a,b) = gcd(c,d) = 1. Call $(a/b)\rho(c/d)$ if and only if either (i) a+b < c+d or (ii) a+b = c+d and $a \leq c$. Prove that ρ is a total order. Prove that \mathbb{Q}^+ is well-ordered by ρ .
- **27.** Construct a well-ordering of \mathbb{Q} .

- **28.** Let *A* be the set of all functions $\mathbb{N} \to \mathbb{N}$. For $f, g \in A$, define $f \leq g$ if and only if $f(n) \leq g(n)$ for all $n \in \mathbb{N}$. prove that \leq is a partial order on *A*. Is \leq also a total order?
- **29.** Let *A* be the set of all functions $\mathbb{N}_0 \to \mathbb{R}^+$.
 - (a) Define a relation Θ on A as $f \Theta g$ if and only if $f = \Theta(g)$. Prove that Θ is an equivalence relation.
 - (b) Define a relation O on A as f O g if and only if f = O(g). Argue that O is not a partial order.

Define a relation O on A/Θ as [f] O [g] if and only if f = O(g).

- (c) Establish that the relation O is well-defined.
- (d) Prove that O is a partial order on A/Θ .
- (e) Prove or disprove: O is a total order on A/Θ .
- (f) Prove or disprove: A/Θ is a lattice under O.
- **30.** Let *k* be a fixed positive integer. Define a relation \leq on $A = \mathbb{Z}^k$ as: $(a_1, a_2, \dots, a_k) \leq (b_1, b_2, \dots, b_k)$ if and only if $a_i \leq b_i$ for all $i = 1, 2, \dots, k$. Prove that *A* is a lattice under this relation.
- **31.** Let *A* be a poset under the relation ρ . Prove or disprove:
 - (a) If ρ is a total order, then A is a lattice.
 - (b) If A is a lattice, then ρ is a total order.
- **32.** Let *A* be a poset. We call *A* a *meet-semilattice* (resp. *join-semilattice*) if glb(a,b) (resp. lub(a,b)) exists for all $a, b \in A$. *A* is a lattice if and only if it is both a meet-semilattice and a join-semilattice. Give examples of:
 - (a) A meet-semilattice which is not a lattice.
 - (b) A join-semilattice which is not a lattice.