(CS21201 Discrete Structures
Tutorial 6

Sets, Relations, and Functions
1. Let A,B,C € % are three arbitrary sets such that, AUB=AUC and ANB =ANC. Prove that, B=C.

Solution B = BN(AUB) = BN(AUC) = (BNA)U(BNC) = (ANC)U(BNC) = (AUB)NC = (AUC)NC = C.
B = BU(ANB) = BU(ANC) = (BUA)N(BUC) = (AUC)N(BUC) = (ANB)UC = (ANC)UC = C.

2. Define a relation p on N as a p b if and only if a has the same set of prime divisors as b. For example,
5 is related to 25 = 5%, 12 = 22 x 3 is related to 54 = 2 x 33, but 12 is not related to 16 = 2%, nor to
180 =22 x 32 x 5.

(a) Prove that p is a equivalence relation on N.

Solution [Reflexive] a has the same set of prime divisors as itself, that is, p is reflexive.
[Symmetric] If a has the same set of prime divisors as b, then b too has the same set of prime divisors as a,

that is, p is symmetric.
[Transitive] If @ and b have the same set of prime divisors, and b and ¢ have the same set of prime divisors,
then a and ¢ too have the same set of prime divisors, that is, p is transitive.

(b) Find the equivalence classes N/p.

Solution For all prime numbers, py,p2,..., Pk, .., we have, [py] = {pz [i>1}

e e

For all composite numbers, ¢ = pi' p3* -~ pi*, we have, [pipa>---pi] = {q | pi > 1, e; > 0 where 1 <i < k}

(¢) A non-zero integer is called square-free if it is not divisible by the square of a prime number. Prove
that, each equivalence class in N/p contains a unique square-free integer, and that these unique square-free
integers are different in distinct equivalence classes.

Solution Let a € N have the prime factorization a = p{'--- p* with ¢ > 0, pairwise distinct primes py,---, p; and each
e; > 0. But, then a is related to the square-free integer p; - - - p;. No other square-free integer can have the same
prime divisors as pj - - - p;. Thus, [a] contains a unique square-free integer. Also if [a] # [b], we have [a]N[b] = ¢
(p is an equivalence relation and so the equivalence classes partition ), that is, the square-free integers in [d]
and [b] are distinct.

3. Define two relations p and ¢ on R as follows.
(@) apbifandonlyifa—beQ
(b) acbifandonlyifa—beZ

Prove that, p and o are equivalence relations on R. Also, find the equivalence classes (with representatives).

Solution [Reflexive] 0= % is a rational (or itself an integer).
[Symmetric] If @ — b is rational (or integer), then b —a = —(a — b) is rational (or integer) too.
[Transitive] If a—b and b — ¢ are rational (or integer), then a — ¢ = (a — b) + (b — ¢) is again rational (or

integer).
(a) Equivalence classes [x] of R/p is of the form, [x] = {x+r | r € Q}
(b)  Equivalence classes [y] of R/c is of the form, [y] = {y+s | s € Z}

4. [Genesis of rational numbers] Define a relation p on A = Z x (Z\ {0}) as (a,b) p (c,d) if and only if
ad = bc. Prove that p is an equivalence relation. Argue that A /p is essentially the set Q of rational numbers.
In abstract algebra, we say that Q is the field of fractions of the integral domain Z. The equivalence class
[(a,b)] is conventionally denoted by .

Solution [Reflexive] (a,b) p (a,b), since ab = ba.
[Symmetric]  (a,b) p (c,d) implies (c,d) p (a,b), since ad = bc = cb = da.
[Transitive] If (a,b) p (c,d) iff ad = be, and (c,d) p (e, f) iff ¢f = de, then we get, (a,b) p (e, f), since
ad=bc = adf=bcf = adf=bde = af =be(asd+#0).

Equivalence classes of A/p are of the form, [(a,b)] = [4] = {% | n € N} and denotes the set Q of rationals.
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5. For a function f : A — B, define a function .% : Z(A) — P (B) as .7 (S) = f(S) forall S C A, where Z(A)
and Z(B) denote the power sets of A and B, respectively. Prove the following.

(a) .7 isinjective if and only if f is injective.

Solution Note that f(S) = U,es f(s) C B, where S C A.

[<] If fis injective, then we know that f(a) = f(a2) = a1 = az, (a1,a2 € A). So, for §1,5, C A, since we

have f(Sl) = Ualesl f(al) and f(Sz) = Uazeszf az), we have, f(S]) = f(Sz) = 81 = 8. For 1,5, € QZ(S)
and S1,S5, C A, we can say, % (S1) = % (S2) = f(S1) = f(S2) = S; = S». This concludes that .7 is injective.

(=] If.Z isinjective, then for S1,5, € Z2(S) and S1,S2 C A, we can say, .# (S1) = .7 (S2) = S1 = S». Since
F(S) = f(S) for all S C A, we can say, f(S1) = f(S2) = S1 = S. Therefore, for s; € S; and s, € S, we have
f(s1) = f(s2) = s1 = s2. This concludes that f is injective.

(b) % is surjective if and only if f is surjective.

Solution [«] If f is surjective, then we know that for all b € B, there exists a € A, such that f(a) = b. Therefore, for
all S, C B, there exists S1 C A, such that f(S;) = S5. It follows that for all S, € &2(B), there exists S} € Z(A),
such that .# (S;) = S,. This concludes that .% is surjective.

(=] If.Z is surjective, then we know that for all S» € Z?(B), there exists §; € Z?(A), such that .7 (S)) = S».
As Z(S) = f(S) forall S C A, it implies that for all S, C B, there exists S; C A, such that f(S;) = S,. It follows
that for all b € S, there exists a € Sy, such that f(a) = b. This concludes that f is surjective.

(c) 7 isbijective if and only if f is bijective.

Solution The above parts (a) and (b) together prove this.

6. Let f: A — B be a function and ¢ an equivalence relation on B. Define a relation p on A as: a p @’ if and
only if f(a) o f(d).
(a) Prove that p is an equivalence relation on A.
Solution Leta,d',d" € A.
[p is reflexive]  Clearly, f(a) o f(a) (since o is reflexive), that is, a p a.
[p is symmetric]  Also, a p a implies f(a) o f(d'), that is, f(a') o f(a) (since o is symmetric), that is,
dapa.
[p is transitive]  Finally, a p @’ and @' p " imply f(a) 6 f(d') and f(d') o f(a"), thatis, f(a) o f(a”) (since
o is transitive), that is, a p a”.

(b) Defineamap f:A/p — B/o as [a], — [f(a)]s. Prove that f is well-defined.

Solution Suppose [a], = [d'],, thatis, a p d', that s, f(a) o f(d'), thatis, [f(a)]e = [f(d)]e.

[The question of well-defined-ness arises here, because the value of the function is defined in terms of a
representative of a class. Thus, we needed to show that irrespective of the choice of the representative, we
get the same value for the function. The assignment g : Zs — Zg taking [a]5 — [ale is not well-defined. For
example, [0]s = [5]s, but [0]¢ # [5]6, that is, we get different values when we use different representatives of the
same class in the argument.]

(¢) Prove that f is injective.

Solution Suppose f([alp) = f([d']p), thatis, [f(a)]s = [f(d')]s. thatis, f(a) o f(d'), thatis, a p &, that s, [a], = [d'],.
So f is injective.

(d) Prove or disprove: If f is a bijection, then so also is f.

Solution This is true. By Part (c), f is injective. On the other hand, take any [b] € B/o. Since f is surjective, we have
b = f(a) for some a € A. But then f([alp) = [f(a)]s = [b], that is, f is surjective too.

[Note that, we never used the fact that f is injective. Indeed, f is bijective, whenever f is surjective.]

(e) Prove or disprove: If f is a bijection, then so also is f.
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Solution This is false. Take A = {a,b,c}, B={1,2} and o = {(1,1),(2,2)}. Also define f as f(a) = f(b) =1 and
f(c) =2. Then p = {(a,a),(b,b),(a,b),(b,a),(c,c)}, that is, A/p = {{a,b},{c}}, B/o = {{1},{2}}, and

f({a,b}) = {1} and f({c}) = {2}. Therefore, f is a bijection, whereas f is not.
7. In this exercise, we plan to construct a well-ordering of A = N x N.
(a) First define a relation p on A as (a,b) p (c,d) if and only if a < ¢ or b < d. Prove or disprove: p is a

well-ordering of A.

Solution No. Indeed, p is not at all a partial order, since it is not antisymmetric: we have both (1,2) p (2,1) and

(2,1) p (1,2), but (1,2) # (2,1).

(b) Next, define a relation ¢ on A as (a,b) ¢ (c¢,d) if and only if a < ¢ and b < d. Prove or disprove: o is
a well-ordering of A.

Solution No. One can easily check that o is a partial order on A. However, it is not a total order (and hence cannot be a
well-ordering of A): the pairs (1,2) and (2, 1) are, for example, not comparable.

(c) Finally, define a relation <; on A as (a,b) <. (c¢,d) if either (i) a < c or (ii) a = ¢ and b < d. Prove
that, < is a partial order on A.

Solution By Condition (ii), (a,b) <1, (a,b). Now suppose that (a,b) <. (¢,d) and (¢,d) <. (a,b). If a < ¢, we cannot
have (c¢,d) < (a,b). Similarly, if ¢ < a, we cannot have (a,b) <f, (¢,d). Soa=c. Butthen b < d andd < b,
that is, b = d. Finally, suppose that (a,b) <y (c,d) and (¢,d) <p (e, f). Thena < candc<Le. Ifa<corc<e,
then a < e. On the other hand, if « = ¢ = ¢, we must have b < d and d < f. Butthen b < f.

(d) Prove that <, is a total order on A.

Solution Take any (a,b) and (c,d) in A. If a < ¢, then (a,b) <, (¢,d). If a > ¢, then (c,d) <, (a,b). Finally, suppose
that a = c. Since either b < d or d < b, we have either (a,b) <y, (¢,d) or (¢,d) <z, (a,b).

(e) Is A well-ordered under <, ?

Solution Yes. Let S be a non-empty subset of A. Take X = {a € N | (a,b) € A for some b € N}. Since S is non-empty,
X is non-empty too and contains a minimum element; call it x. For this x, let Y = {b € N | (x,b) € S}. Since
Y is a non-empty subset of N, it contains a minimum element; call it y. It is now an easy check that (x,y) is a
minimum element of S.

(f) Prove or disprove: An infinite subset of A may contain a maximum element.

Solution True. The infinite subset {(1,b) | b€ N}U{(2,1)} of A contains the maximum element (2, 1).

Note: The ordering <; on N x N described in this exercise is called the lexicographic ordering, since this is
how you sort two-letter words in a dictionary. One can readily generalize this ordering to N” for any n > 3.

8. Give an example of a poset A and a non-empty subset S of A such that S has lower bounds in A, but g/b(S)
does not exist.

Solution Take A = Q under the standard < on rational numbers. Also take S = {x € Q | x> > 2}. Every rational number
< /2 is a lower bound on S. Since /2 is irrational, g/h(S) does not exist.

Another example: Take A to be the set of all irrational numbers between 1 and 5, and S to be the set of all
irrational numbers between 2 and 3.

A simpler (but synthetic) example: Take A = {a,b,c,d} and the relation on A as,

p ={(a,a),(a,c),(a,d),(b,b),(b,c),(b,d)(c,c),(d,d)}
The subset S = {c,d} of A has two lower bounds a and b, but these bounds are not comparable to one another.
9. Let C denote the set of complex numbers and Z/[i] the subset {a +ib | a,b € Z} of C. Elements of Z]i] are

called Gaussian integers. For z = x+ iy € C, we denote by |z| the magnitude of z and by arg z the argument
of z. Thus, z = y/x?+y? and arg z = tan"' 2. We take arg z in the interval [0,27).
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Define a relation p on C as follows. Take z;,z> € C. We say that z; p z if and only if

either (i) |z1] < |z2],
or (i) |z1| = |z2| and arg z; < arg z,.

Also define a relation o on C as z; 0 z; if and only if |z;| = |z2].

(a) Prove that p is a partial order on C.

Solution Let z,z1,22,23 € C. We have |z| = |z| and arg 7 < arg z, that is, z p z, that is, p is reflexive.

Then suppose z; p z2 and 2 p z;. If |z1| < |z2|, we cannot have z p z;. Analogously, if |z;| < |z1|, we cannot
have z; p zp. Therefore, |z1| = |z2|. In that case, arg z; < arg zp and arg zp < arg zj, that is, arg z; = arg zp. It
follows that z; = zp, that is, p is antisymmetric.

Finally, let z; p z> and z5 p z3. This means |z1| < |z2| < |z3|. If 21| < |z2] or |22| < |z3], then |z;| < |z3], that is,
71 p z3. If 21| = |z2| = |z3], we have arg z; < arg zp < arg z3, that is, again z; p z3. Thus, p is transitive.

(b) Prove that p is a well-ordering of Z][i].

Solution Let S be a non-empty subset of Z[i]. Consider the set X = {|z]* | z € S}. X, being a non-empty subset of N,
contains a minimum element; call it n. Let Y = {z € § | |z|> = n}. Since the equation x> +y? = n can have only
finitely many solutions in integer values of x and y, the set Y is finite. It is also non-empty. Thus, Y contains a
minimum element; call it z. It is clear that this z is the minimum element of S with respect to p.

(¢) Prove that o is an equivalence relation on C.

, we have z o z, that is, o is reflexive.

Solution Let z,z1,22,23 € C. Since |z| = |z
Also z; 0 7o implies |z1| = |z2], that is, |z2| = |z1], that is, z2 © zj, that is, 0 is symmetric.

Finally, z; 0 z2 and zp 0 z3 imply |z1| = |22| = |z3|, that is, z; © z3, that is, © is transitive too.
(d) What are the equivalence classes of 6?7 (Provide a geometric description.)

Solution Let 7 =x+iy € C with r = \/x2+y2. Then [z]s consists precisely of all complex numbers whose absolute
values equal r, that is, [z]s is the circle of radius r centered at the origin.

10. Letk e N, S ={1,2,...,k},and A = Z(S) \ {9}, where Z(S) denotes the power set of S, and ¢ denotes
the empty set. In other words, the set A comprises all non-empty subsets of {1,2,...,k}. For each a € A
denote by min(a) the smallest element of a (notice that here a is a set).

(a) Define arelation p on A as follows: a p b if and only if min(a) = min(b). Prove that p is an equivalence
relation on A.

Solution [Reflexive] For any a € A we have min(a) = min(a).
[Symmetric]  For any a,b € A, if min(a) = min(b), then min(b) = min(a).
[Transitive]  For any a,b,c € A, if min(a) = min(b) and min(b) = min(c), then min(a) = min(c).

(b) What is the size of the quotient set A/p ?

Solution Any two non-empty subsets of S having the same minimum element are related. On the other hand, two subsets
of § having different minimum elements are not related. Therefore, each equivalence class of p has a one-to-one
correspondence with an element of S (the minimum element of every member in the class). Since S contains k
elements, there are exactly k equivalence classes, that is, the size of A/p is k.

(c) Define a relation ¢ on A as follows: a ¢ b if and only if either a = b or min(a) < min(b). Prove that,
o is a partial order on A.

Solution [Reflexive] By definition, every element is related to itself.
[Antisymmetric] Take two elements a,b € A. Suppose that a ¢ b and b ¢ a. If a # b, then by definition,
min(a) < min(b) and min(b) < min(a), which is impossible. So we must have a = b.
[Transitive] Suppose a ¢ b and b ¢ ¢ for some a,b,c € A. If a = b or b = ¢, then clearly a ¢ ¢. So suppose
that a # b and b # c. But then min(a) < min(b) and min(b) < min(c). This implies that min(a) < min(c), that
is,a o c.
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(d) Is o also atotal order on A ?

Solution No! Take k > 2. The sets {1} and {1,2} are distinct, but have the same minimum element, and are, therefore,

11.

not comparable.

Let A be a lattice with respect to a relation <. Prove that every non-empty finite subset of § has a least upper
bound and a greatest lower bound. In particular, every finite lattice is complete.

Solution Let S be a non-empty finite subset of A with |S| = n. We prove by induction on 7 that /ub(S) exists. A proof for

12.

13.

14.

15.

16.

the existence of glb(S) proceeds analogously.

Since S # 0, we have n > 1. For n = 1,2, the assertion about the existence of lub(S) is obvious. So
take n > 3, and assume that every (n— 1)- and (n — 2)-element subset of A has a least upper bound. Take
S={ai,as,...,a,} CA. Since A is a lattice, b = lub(a,_1,a,) exists. Let T = {ay,as,...,a,—2,b}. By the
induction hypothesis, T has a least upper bound (7 has size n — 1 or n — 2).

Let Uy (resp. Ur) be the set of all upper bounds of S (resp. T'). We first claim that U; = Ur. For the proof, first
take u € Us. Then ¢; < u forall i = 1,2,... n. In particular, a,—; < u and a, < u. Since b = lub(a,_1,a,), we

have b < u, that is, u € Ur. Conversely, if u € Ur, then a; Suforalli=1,2,...,n—2, and b < u. Since b is
an upper bound of both a,_; and a,, we also have a,_1 <X b and a, < b. By transitivity, a,—; < u and a, = u.
Thus u € Us.

Since T has a least upper bound, Ur is non-empty and contains the unique minimum element [ub(T). Since
Us = Ur, the same conclusions apply to S as well. It therefore follows that lub(S) = lub(T).

(Remark: The above result applies only to finite subsets of A. Infinite subsets may have no least upper bounds
and/or no greatest lower bounds. For example, consider the divisibility lattice on N. The Icm of any finite (and
non-zero) number of elements exists, but the lcm of an infinite number of (distinct) elements does not exist.)

Additional Exercises

Let f : A — B be a function. Prove the following assertions.

(@) SC fI(f(S)) for every S C A. Give an example where the inclusion is proper.
(b) fisinjective if and only if S = f~!(f(S)) for every S C A.

(¢) f(f~(T)) C T forevery T C B. Give an example where the inclusion is proper.
(d) f is surjective if and only if f(f~!(T)) =T forevery T C B.

(@ f(f1(f(5))) = f(S) forall S C A.

® fHT))) = N(T) forall T CB.

Let f:A — Band g: B— C be functions.

(a) Prove that if the function go f : A — C is injective, then f is injective.
(b) Give an example in which go f is injective, but g is not injective.

(¢) Prove thatif go f is surjective, then g is surjective.

(d) Give an example in which go f is surjective, but f is not surjective.

A function f : Z — Z is called nilpotent if for some n € N we have f"(a) = 0 for all a € Z.
(a) Give an example of a non-constant nilpotent function.

(b) Prove or disprove: The function f(a) = ||a|/2] is nilpotent.

A function f : R — R is called monotonic increasing if f(a) < f(b) whenever a < b. It is called strictly
monotonic increasing if f(a) < f(b) whenever a < b. One can define monotonic decreasing and strictly
monotonic decreasing functions in analogous ways.

(a) Prove that a strictly monotonic increasing function is injective.
(b) Demonstrate that an injective function R — R need not be strictly increasing or strictly decreasing.
(c) Prove that a continuous injective function R — R is either strictly increasing or strictly decreasing.

Let A be the set of all functions R — R. Define relations p,c,7 on A as follows: (i) f p g if and only if
fla) < g(a) foralla € R; (ii) f o g if and only if f(0) < g(0); (iii) f 7 g if and only if £(0) = g(0).
Argue which of the relations p, o, T is/are equivalence relation(s). Argue which is/are partial order(s).
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17.

18.

19.

20.

*21.

22.

23.

24.

25.
26.

27.

Let p be a relation on a set A. Define p~! = {(b,a) | (a,b) € p}. Also for two relations p, o on A, define the
composite relation p o o as (a,c) € p o o if and only if there exists b € A such that (a,b) € p and (b,c) € ©.
Prove the following assertions.

(a) p is both symmetric and antisymmetric if and only if p C {(a,a) |a € A}.

(b) p istransitive if and only if pop = p.

(¢) If p is non-empty, then p is an equivalence relation if and only if p~!op = p.
(d) p is a partial order if and only if p~' is a partial order.

Let A be the set of all non-empty finite subsets of Z. Define a relation p on A as: U p V if and only if
min(U) = min(V). Also define the relation 6 on A as: U ¢ V if and only if min(U) < min(V). Finally,
define a relation 7 on A as: U 7V if and only if either U =V or min(U) < min(V).

(a) Prove that p is an equivalence relation on A.

(b) Identify good representatives from the equivalence classes of p.
(c) Define a bijection between the quotient set A/p and Z.

(d) Prove or disprove: o is a partial order on A.

(e) Prove or disprove: 7 is a partial order on A.

Let f: A — B be a function, p an equivalence relation on A, and ¢ an equivalence relation on B. Suppose
further that if f(a) o f(a’), then a p a’. Show by an explicit example that the association f: A/p — B/c
given by f([alp) = [f(a)]s is not necessarily a function.

Let m,n be positive integers. Prove that the assignment f : Z,, — 7Z, taking |al,, — [a], is well-defined if
and only if m is an integral multiple of n.

[Genesis of real numbers] An infinite sequence aj,as,as,... of rational numbers is called a Cauchy
sequence if given any real € > 0 there exists an N € N such that |a,, —a,| < € for all m,n > N. Let C
denote the set of all Cauchy sequences of rational numbers.

(a) Prove that any Cauchy sequence converges, that is, has a limit.

(b) Establish that the limit of a Cauchy sequence may be irrational.

(c) Define arelation p on C as S p T if and only if lim$S = lim 7. Prove that p is an equivalence relation.
(d) Convince yourself that C/p is essentially the set R of real numbers. This process of the generation of
R from Q is called completion. Another method of defining R uses Dedekind cuts.

Let p be a total order on A. We call p a well-ordering of A if every non-empty subset of A contains a least
element. Which of the following sets is/are well-ordered under the standard < relation: N, Z, Q*, R?

A string is a finite ordered sequence of symbols from a finite alphabet. We start with a predetermined total
ordering of the alphabet, and then define the usual dictionary order on strings. Prove that this dictionary
order (called lexicographic ordering) is a total ordering. Is it also a well-ordering?

Define a relation <p; on A = N x N as follows. Take (a,b), (¢,d) € A and call (a,b) <pr, (c,d) if either (i)
a+b<c+d,or(ii)a+b=c+danda<c.

(a) Prove that <p is a partial order on A.

(b) Prove that <p, is a total order on A.

(¢) Is A well-ordered by <p?

(d) Prove or disprove: An infinite subset of A may contain a maximum element.

Note: The ordering <p; on A is called the degree-lexicographic ordering. Identify (a,b) € A with the
monomial X“Y?. First, order monomials with respect to their degrees. For two monomials of the same
degree, apply lexicographic ordering. For example, XY? <p; ¥ and XY?3 <p; X°Y2.

Generalize the degree-lexicographic ordering on N” for any fixed n > 3.

Consider the following relation p on the set QT of all positive rational numbers. Take a/b,c/d € Q" with
gcd(a,b) = ged(c,d) = 1. Call (a/b) p (¢/d) if and only if either (i) a+b < c+d or (ii) a+b = c+d and
a < c. Prove that p is a total order. Prove that Q" is well-ordered by p.

Construct a well-ordering of Q.
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28.

29.

30.

31.

32.

Let A be the set of all functions N — N. For f, g € A, define f < g if and only if f(n) < g(n) for all n € N.
prove that < is a partial order on A. Is < also a total order?
Let A be the set of all functions Ny — R™.

(a) Define a relation ® on A as f © g if and only if f = ®(g). Prove that ® is an equivalence relation.
(b) Define a relation O on A as f O g if and only if f = O(g). Argue that O is not a partial order.

Define a relation O on A/@® as [f] O [g] if and only if f = O(g).

(¢) Establish that the relation O is well-defined.
(d) Prove that O is a partial order on A/®.

(e) Prove or disprove: O is a total order on A/®.
(f) Prove or disprove: A/@ is a lattice under O.

Let k be a fixed positive integer. Define a relation < on A = ZF as: (a1, as,...,a;) < (by,by,...,by) if and
only if a; < b; for alli = 1,2,... k. Prove that A is a lattice under this relation.

Let A be a poset under the relation p. Prove or disprove:

(a) If p is atotal order, then A is a lattice.

(b) If A is alattice, then p is a total order.

Let A be a poset. We call A a meet-semilattice (resp. join-semilattice) if glb(a,b) (resp. lub(a, b)) exists for
alla,b € A. A is a lattice if and only if it is both a meet-semilattice and a join-semilattice. Give examples of:

(a) A meet-semilattice which is not a lattice.
(b) A join-semilattice which is not a lattice.
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