Pigeon-Hole Principle

1. You pick nine distinct points with integer coordinates in the three-dimensional space. Prove that there must exist two of these nine points-call them P and Q-such that the line segment $P Q$ has a point on it (other than P and Q) with integer coordinates.

Solution Consider the parities (odd/even) of the coordinates of the points. For each point, there are eight possibilities. In the given collection of nine points, some possibility must be repeated. Take P and Q as the pair with the same parities in each of the coordinates. But then $(P+Q) / 2$ is a point with integer coordinates.
2. Let $n \geqslant 10$ be an integer. You choose n distinct elements from the set $\left\{1,2,3, \ldots, n^{2}\right\}$. Prove that there must exist two disjoint subsets of the chosen numbers, whose sums are equal.

Solution The sum of the elements of a subset of $\left\{1,2,3, \ldots, n^{2}\right\}$ of size less than n is $<n^{3}$. The chosen collection has $2^{n}-1$ non-empty subsets. For $n \geqslant 10$, we have $2^{n}-1>n^{3}$, so there must exist two different non-empty subsets A and B of the chosen numbers such that $\sum_{a \in A} a=\sum_{b \in B} b$. If A and B are not disjoint, take $A-(A \cap B)$ and $B-(A \cap B)$ as A and B.
3. Let ξ be an irrational number. Prove that given any real $\varepsilon>0$ (no matter how small), there exist integers a, b such that $0<a \xi-b<\varepsilon$.

Solution Let $\{x\}=x-\lfloor x\rfloor$ denote the fractional part of x. Choose an integer $n>\frac{1}{\varepsilon}$. Consider the $n+1$ fractional parts $\{\xi\},\{2 \xi\},\{3 \xi\}, \ldots,\{(n+1) \xi\}$. These are real numbers in the interval $[0,1)$. Break this interval into n nonempty sub-intervals $\left[0, \frac{1}{n}\right),\left[\frac{1}{n}, \frac{2}{n}\right),\left[\frac{2}{n}, \frac{3}{n}\right], \ldots,\left[\frac{n-1}{n}, 1\right)$. Two of the above $n+1$ fractional parts must belong to the same sub-interval. Call these fractional parts $\{i \xi\}$ and $\{j \xi\}$ with $\{i \xi\} \geqslant\{j \xi\}$. We have $i \xi=u+\{i \xi\}$ and $j \xi=v+\{j \xi\}$ for some integers u and v. But then $\{i \xi\}-\{j \xi\}=(i-j) \xi-(u-v)$ (so we take $a=i-j$ and $b=u-v$). By the choice of i and j, we have $\{i \xi\}-\{j \xi\} \leqslant \frac{1}{n}<\varepsilon$. If $\{i \xi\}-\{j \xi\}=0$, we have $\xi=\frac{u-v}{i-j}$, which contradicts the fact that ξ is irrational. So we must have $\{i \xi\}-\{j \xi\}>0$.
4. Let $p(x)$ be a polynomial with integer coefficients, having three distinct integer roots a, b, c. Prove that the polynomials $p(x) \pm 1$ cannot have any integer roots.

Solution Suppose that an integer d exists with $p(d) \pm 1=0$, that is, with $p(d)=\mp 1$. Clearly, d is different from a, b, c. For all $u, v \in \mathbb{Z}$ and $n \in \mathbb{N}_{0}$, we have $(u-v) \mid\left(u^{n}-v^{n}\right)$, and so $(u-v) \mid(p(u)-p(v))$. But then, the non-zero differences $d-a, d-b, d-c$ all divide $\mp 1-0=\mp 1$, and so can only be ± 1. Therefore, at least two of the three differences $d-a, d-b, d-c$ must be the same, contradicting the fact that a, b, c are distinct from one another.

Additional Exercises

5. A repunit is an integer of the form $111 \ldots 1$. Prove that any $n \in \mathbb{N}$ with $\operatorname{gcd}(n, 10)=1$ divides a repunit.
6. You pick six points in a 3×4 rectangle. Prove that two of these points must be at a distance $\leqslant \sqrt{5}$.
7. Let $a, b \in \mathbb{N}$ with $\operatorname{gcd}(a, b)=1$. Use the pigeon-hole principle to prove that $u a+v b=1$ for some $u, v \in \mathbb{Z}$.
8. [Chinese remainder theorem] Let $m, n \in \mathbb{N}$ with $\operatorname{gcd}(m, n)=1, a \in\{0,1,2, \ldots, m-1\}$, and $b \in\{0,1,2$, $\ldots, n-1\}$. Prove that there exists an integer x such that x rem $m=a$, and x rem $n=b$.
9. Let ξ be an irrational number. Prove that given any real $\varepsilon>0$ (no matter how small), there exist infinitely many pairs of integers a, b such that $0<a \xi-b<\varepsilon$.
10. Show that there exists an integer n such that $0<\sin n<2^{-2021}$.
11. (a) Let p be a prime number, and x an integer not divisible by p. Prove that there exist non-zero integers a, b of absolute values less than \sqrt{p} such that $p \mid(a x-b)$.
(b) Now assume that p is of the form $4 k+1$. We know from number theory that in this case there exists an integer x such that $p \mid\left(x^{2}+1\right)$. Show that $p=a^{2}+b^{2}$ for some integers a, b.
