Third Test

1. Consider the following three sets.
$S=$ The set of all infinite bit sequences,
$A=$ The set of all infinite bit sequences containing two consecutive 0's (at least once),
$B=$ The set of all infinite bit sequences not containing two consecutive 0 's.

In the class, we have seen that S is uncountable. This exercise deals with the countability/uncountability of A and B.
(a) Propose an injective map $f: S \rightarrow A$, and argue about the countability/uncountability of A.

Solution Take an element (an infinite bit sequence) $\alpha \in S$. If α does not contain 0 , that is, if $\alpha=111 \ldots 1 \ldots$, take $f(\alpha)=00111 \ldots 1 \ldots$. Otherwise, let $\hat{\alpha}$ be the string obtained by duplicating the first 0 in α, and define $f(\alpha)=1 \hat{\alpha}$. For example, $f(010101 \ldots)=10010101 \ldots, f(0111 \ldots 1 \ldots)=100111 \ldots 1 \ldots$, and $f(000 \ldots 0 \ldots)=10000 \ldots 0 \ldots$
The injective map implies $|S| \leqslant|A|$. But S is already uncountable, so A is uncountable too.
(b) Prove whether B is countable or uncountable.

Solution B is uncountable. Let T be the set of all infinite sequences over the alphabet $\{1,2\}$. Define a map $g: T \rightarrow B$ as follows. Take any $\beta \in T$, and replace every occurrence of 2 by 01 to get the string $\hat{\beta}$, and define $g(\beta)=\hat{\beta}$. Since we replace all occurrences of 2 by $01, \hat{\beta}$ does not contain any 2 , so $\hat{\beta} \in S$. Moreover, the construction does not introduce two consecutive 0 's in $\hat{\beta}$, so $\hat{\beta} \in B$ too, that is, g is well-defined. Finally, it is easy to see that g is injective (indeed g is a bijection). It follows that $|T| \leqslant|B|$, and like A, the set B is uncountable too.
2. Consider the sequence $a_{0}, a_{1}, a_{2}, \ldots$ defined recursively as follows.

$$
\begin{aligned}
& a_{0}=0 \\
& a_{1}=1 \\
& a_{2}=2, \\
& a_{n}=2 a_{n-2}+a_{n-3}+2 \text { for all } n \geqslant 3 .
\end{aligned}
$$

(a) Derive a closed-form expression for the (ordinary) generating function $A(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+$ $a_{n} x^{n}+\cdots$ of the sequence.

Solution We have

$$
\begin{aligned}
A(x) & =a_{0}+a_{1} x+a_{2} x^{2}+\sum_{n \geqslant 3} a_{n} x^{n} \\
& =x+2 x^{2}+\sum_{n \geqslant 3}\left(2 a_{n-2}+a_{n-3}+2\right) x^{n} \\
& =x+2 x^{2}+2 x^{2} \sum_{n \geqslant 3} a_{n-2} x^{n-2}+x^{3} \sum_{n \geqslant 3} a_{n-3} x^{n-3}+2 x^{3} \sum_{n \geqslant 3} x^{n-3} \\
& =x+2 x^{2}+2 x^{2}(A(x)-0)+x^{3} A(x)+\frac{2 x^{3}}{1-x} \\
& =\left(2 x^{2}+x^{3}\right) A(x)+\frac{x+x^{2}}{1-x} . \\
A(x) & =\frac{x+x^{2}}{(1-x)\left(1-2 x^{2}-x^{3}\right)}=\frac{x(1+x)}{(1-x)(1+x)\left(1-x-x^{2}\right)}=\frac{x}{(1-x)\left(1-x-x^{2}\right)} .
\end{aligned}
$$

(b) From the closed-form expression of $A(x)$ derived in Part (a), establish that $a_{n}=F_{n+2}-1$ for all $n \geqslant 0$, where $F_{0}, F_{1}, F_{2}, \ldots$ is the Fibonacci sequence. Use no other method.

$$
\frac{x}{(1-x)\left(1-x-x^{2}\right)}=\frac{A}{1-x}+\frac{B x+c}{1-x-x^{2}} .
$$

Solving gives $A=-1$ and $B=C=1$, that is,

$$
A(x)=\frac{1+x}{1-x-x^{2}}-\frac{1}{1-x}
$$

The OGF of the Fibonacci sequence is $\frac{x}{1-x-x^{2}}$, that is, $\frac{x}{1-x-x^{2}}$ generates $F_{0}, F_{1}, F_{2}, \ldots, F_{n}, \ldots$. This implies that $\frac{1}{1-x-x^{2}}$ generates $F_{1}, F_{2}, F_{3}, \ldots, F_{n+1}, \ldots$. Finally, $\frac{1}{1-x}$ generates $1,1,1, \ldots$ Therefore, we have $a_{n}=F_{n}+F_{n+1}-1=F_{n+2}-1$ for all $n \geqslant 0$.
3. Solve the following recurrence, and obtain the closed-form expression for a_{n}.

$$
a_{n}=8 a_{n-2}-16 a_{n-4}+2^{n} \quad(\text { for } n \geqslant 4) \quad \text { with } \quad a_{0}=1, a_{1}=\frac{17}{4}, a_{2}=30, a_{3}=41
$$

Note: Use of generating functions is not allowed in this exercise.
Solution The characteristics equation for the homogeneous part of the given recurrence is:

$$
r^{4}-8 r^{2}+16=0 \quad \Rightarrow \quad(r-2)^{2}(r+2)^{2}=0
$$

which derives the four roots as, $2,2,-2$, and -2 . Hence, the general form of the homogeneous solution is:

$$
a_{n}^{(h)}=(A+B n) 2^{n}+(C+D n)(-2)^{n} .
$$

From the given recurrence, we also get the general form of the particular solution is:

$$
a_{n}^{(p)}=E n^{2} 2^{n} .
$$

Solving for the particular solution constant from the following:

$$
E n^{2} 2^{n}=8 E(n-2)^{2} 2^{n-2}-16 E(n-4)^{2} 2^{n-4}+2^{n}, \quad \text { we get } \quad E=\frac{1}{8}
$$

Therefore, the final generic solution form is: $\quad\left(a_{n}=a_{n}^{(h)}+a_{n}^{(p)}\right)$

$$
a_{n}=(A+B n) 2^{n}+(C+D n)(-2)^{n}+\frac{1}{8} n^{2} 2^{n}
$$

Now, solving for the constants in the above equation, we find:

$$
\begin{aligned}
& a_{0}=1=A+C \\
& a_{1}=\frac{17}{4}=2 A+2 B-2 C-2 D+\frac{1}{4} \\
& a_{2}=30=4 A+8 B+4 C+8 D+2 \\
& a_{3}=41=8 A+24 B-8 C-24 D+9
\end{aligned}
$$

which yields $\quad A=1, \quad B=2, \quad C=0, \quad D=1$. So, the final solution to the given recurrence is:

$$
a_{n}=2^{n}+2 n 2^{n}+n(-2)^{n}+\frac{1}{8} n^{2} 2^{n}=\left[1+2 n+\frac{1}{8} n^{2}\right] 2^{n}+n(-2)^{n}, \quad n \geqslant 0
$$

4. (a) Let $A=\mathbb{Z} \times \mathbb{Z}$, and λ a fixed (constant) positive integer. Define two operations \oplus and \odot on A as

$$
\begin{aligned}
(a, b) \oplus(c, d) & =(a+c, b+d) \\
(a, b) \odot(c, d) & =(a d+b c, b d+\lambda a c)
\end{aligned}
$$

A is a commutative ring with identity under these two operations. You do not have to verify the ring axioms, but only mention what the additive and the multiplicative identities are in A (no need to prove their identity properties). Also, prove that A is an integral domain if and only if λ is not a perfect square.

Solution Additive identity: $(0,0)$. Multiplicative identity: $(0,1)$.
Suppose that λ is not a perfect square, and $(a, b) \odot(c, d)=(0,0)$, that is, $a d+b c=0$ and $b d+\lambda a c=0$. But then, $a(b d+\lambda a c)-b(a d+b c)=0$, that is, $\left(\lambda a^{2}-b^{2}\right) c=0$. Since λ is not a perfect square, we cannot have $\lambda a^{2}-b^{2}=0$ or $\lambda=(b / a)^{2}$. Therefore we must have $c=0$. This in turn implies $a d=0$ and $b d=0$. If $d=0$, we have $c=d=0$, whereas if $d \neq 0$, we have $a=b=0$. That is, A does not contain non-zero zero divisors.
Conversely, let $\lambda=\alpha^{2}$. As derived above, we see that $\lambda a^{2}-b^{2}=0$ is a necessary condition for the existence of non-zero zero divisors. We need to show that this condition is also sufficient. Taking $a=1$ and $b=\alpha$ satisfies the condition. We should also have $a d+b c=0$, that is, $\frac{a}{b}=-\frac{c}{d}$, that is, we can take $c=1$ and $d=-\alpha$. But then, $b d+\lambda a c=-\alpha^{2}+\lambda=0$. Since $(1, \alpha)$ and $(1,-\alpha)$ are non-zero elements of A, and $(1, \alpha) \odot(1,-\alpha)=(0,0)$, A is not an integral domain.
(b) Let (G, \circ) be a group, and c a fixed element of G. Define a binary operation $*$ on G by $a * b=a \circ c \circ b$ for all $a, b \in G$. Prove that $(G, *)$ is a group, clearly showing that all the properties of a group are satisfied.

Solution $(G, *)$ is a group, because it satisfies the following properties of a group.
Closure: For any $p, q \in G, p * q=p \circ c \circ q \in G$, since $c \in G$ and G is closed under the operation \circ.
Associativity: For any $p, q, r \in G$, since G is associative under the operation \circ, we get:

$$
(p * q) * r=(p \circ c \circ q) \circ c \circ r=p \circ c \circ(q \circ c \circ r)=p *(q * r)
$$

Identity: c^{-1} is the identity element. For any element $p \in G$, we get:

$$
p * c^{-1}=p \circ c \circ c^{-1}=p \circ e_{G}=p \quad \text { and } \quad c^{-1} * p=c^{-1} \circ c \circ p=e_{G} \circ p=p
$$

where, $e_{G} \in G$ is the identity element with respect to the group (G, \circ).
Inverse: For any element $p \in G$, let $p^{\prime} \in G$ be its inverse with respect to $*$. Now, by definition we should get $p * p^{\prime}=c^{-1}=p^{\prime} * p$.

$$
\therefore p \circ c \circ p^{\prime}=c^{-1} \quad \text { or } \quad p^{\prime} \circ c \circ p=c^{-1} \quad \Rightarrow \quad p^{\prime}=c^{-1} \circ p^{-1} \circ c^{-1}
$$

where, p^{-1} is the inverse of p with respect to the operation \circ.

