
CS21201 Discrete Structures, Autumn 2021–2022

Third Test

Date: Nov 16, 2021 Time: 10:15am–11:30am Maximum marks: 40

1. Consider the following three sets.

S = The set of all infinite bit sequences,

A = The set of all infinite bit sequences containing two consecutive 0’s (at least once),

B = The set of all infinite bit sequences not containing two consecutive 0’s.

In the class, we have seen that S is uncountable. This exercise deals with the countability/uncountability of

A and B.

(a) Propose an injective map f : S → A, and argue about the countability/uncountability of A. (5)

Solution Take an element (an infinite bit sequence) α ∈ S. If α does not contain 0, that is, if α = 111 . . .1 . . . ,
take f (α) = 00111 . . .1 . . . . Otherwise, let α̂ be the string obtained by duplicating the first 0 in α , and

define f (α) = 1α̂ . For example, f (010101 . . .) = 10010101 . . . , f (0111 . . .1 . . .) = 100111 . . .1 . . . , and

f (000 . . .0 . . .) = 10000 . . .0 . . . .

The injective map implies |S|6 |A|. But S is already uncountable, so A is uncountable too.

(b) Prove whether B is countable or uncountable. (5)

Solution B is uncountable. Let T be the set of all infinite sequences over the alphabet {1,2}. Define a map g : T → B

as follows. Take any β ∈ T , and replace every occurrence of 2 by 01 to get the string β̂ , and define g(β ) = β̂ .

Since we replace all occurrences of 2 by 01, β̂ does not contain any 2, so β̂ ∈ S. Moreover, the construction

does not introduce two consecutive 0’s in β̂ , so β̂ ∈ B too, that is, g is well-defined. Finally, it is easy to see that

g is injective (indeed g is a bijection). It follows that |T |6 |B|, and like A, the set B is uncountable too.

2. Consider the sequence a0,a1,a2, . . . defined recursively as follows.

a0 = 0,

a1 = 1,

a2 = 2,

an = 2an−2 +an−3 +2 for all n > 3.

(a) Derive a closed-form expression for the (ordinary) generating function A(x) = a0 +a1x+a2x2 + · · ·+
anxn + · · · of the sequence. (5)

Solution We have

A(x) = a0 +a1x+a2x2 + ∑
n>3

anxn

= x+2x2 + ∑
n>3

(2an−2 +an−3 +2)xn

= x+2x2 +2x2 ∑
n>3

an−2xn−2 + x3 ∑
n>3

an−3xn−3 +2x3 ∑
n>3

xn−3

= x+2x2 +2x2
(

A(x)−0
)

+ x3A(x)+
2x3

1− x

= (2x2 + x3)A(x)+
x+ x2

1− x
.

A(x) =
x+ x2

(1− x)(1−2x2 − x3)
=

x(1+ x)

(1− x)(1+ x)(1− x− x2)
=

x

(1− x)(1− x− x2)
.

(b) From the closed-form expression of A(x) derived in Part (a), establish that an = Fn+2 −1 for all n > 0,

where F0,F1,F2, . . . is the Fibonacci sequence. Use no other method. (5)
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Solution We can write

x

(1− x)(1− x− x2)
=

A

1− x
+

Bx+ c

1− x− x2
.

Solving gives A =−1 and B =C = 1, that is,

A(x) =
1+ x

1− x− x2
−

1

1− x
.

The OGF of the Fibonacci sequence is
x

1− x− x2
, that is,

x

1− x− x2
generates F0,F1,F2, . . . ,Fn, . . . . This

implies that
1

1− x− x2
generates F1,F2,F3, . . . ,Fn+1, . . . . Finally,

1

1− x
generates 1,1,1, . . . . Therefore, we

have an = Fn +Fn+1 −1 = Fn+2 −1 for all n > 0.

3. Solve the following recurrence, and obtain the closed-form expression for an.

an = 8an−2 −16an−4 +2n (for n > 4) with a0 = 1, a1 =
17

4
, a2 = 30, a3 = 41.

Note: Use of generating functions is not allowed in this exercise. (10)

Solution The characteristics equation for the homogeneous part of the given recurrence is:

r4 −8r2 +16 = 0 ⇒ (r−2)2(r+2)2 = 0

which derives the four roots as, 2, 2, −2, and −2. Hence, the general form of the homogeneous solution is:

a
(h)
n = (A+Bn)2n +(C+Dn)(−2)n.

From the given recurrence, we also get the general form of the particular solution is:

a
(p)
n = En22n.

Solving for the particular solution constant from the following:

En22n = 8E(n−2)22n−2 −16E(n−4)22n−4 +2n, we get E =
1

8
.

Therefore, the final generic solution form is:
(

an = a
(h)
n +a

(p)
n

)

an = (A+Bn)2n +(C+Dn)(−2)n +
1

8
n22n.

Now, solving for the constants in the above equation, we find:

a0 = 1 = A+C

a1 = 17
4

= 2A+2B−2C−2D+
1

4
a2 = 30 = 4A+8B+4C+8D+2

a3 = 41 = 8A+24B−8C−24D+9

which yields A = 1, B = 2, C = 0, D = 1. So, the final solution to the given recurrence is:

an = 2n +2n2n +n(−2)n +
1

8
n22n =

[

1+2n+
1

8
n2
]

2n +n(−2)n, n > 0.

4. (a) Let A = Z×Z, and λ a fixed (constant) positive integer. Define two operations ⊕ and ⊙ on A as

(a,b)⊕ (c,d) = (a+ c,b+d),

(a,b)⊙ (c,d) = (ad +bc,bd +λac).
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A is a commutative ring with identity under these two operations. You do not have to verify the ring axioms,

but only mention what the additive and the multiplicative identities are in A (no need to prove their identity

properties). Also, prove that A is an integral domain if and only if λ is not a perfect square. (2 + 4)

Solution Additive identity: (0,0). Multiplicative identity: (0,1).

Suppose that λ is not a perfect square, and (a,b)⊙ (c,d) = (0,0), that is, ad +bc = 0 and bd +λac = 0. But

then, a(bd +λac)−b(ad +bc) = 0, that is, (λa2 −b2)c = 0. Since λ is not a perfect square, we cannot have

λa2 −b2 = 0 or λ = (b/a)2. Therefore we must have c = 0. This in turn implies ad = 0 and bd = 0. If d = 0,

we have c = d = 0, whereas if d 6= 0, we have a = b = 0. That is, A does not contain non-zero zero divisors.

Conversely, let λ = α2. As derived above, we see that λa2−b2 = 0 is a necessary condition for the existence of

non-zero zero divisors. We need to show that this condition is also sufficient. Taking a = 1 and b = α satisfies

the condition. We should also have ad+bc= 0, that is, a
b
=− c

d
, that is, we can take c= 1 and d =−α . But then,

bd +λac =−α2 +λ = 0. Since (1,α) and (1,−α) are non-zero elements of A, and (1,α)⊙ (1,−α) = (0,0),
A is not an integral domain.

(b) Let (G,◦) be a group, and c a fixed element of G. Define a binary operation ∗ on G by a∗b = a◦ c◦b

for all a,b ∈ G. Prove that (G,∗) is a group, clearly showing that all the properties of a group are satisfied. (4)

Solution (G,∗) is a group, because it satisfies the following properties of a group.

Closure: For any p,q ∈ G, p∗q = p◦ c◦q ∈ G, since c ∈ G and G is closed under the operation ◦.

Associativity: For any p,q,r ∈ G, since G is associative under the operation ◦, we get:

(p∗q)∗ r = (p◦ c◦q)◦ c◦ r = p◦ c◦ (q◦ c◦ r) = p∗ (q∗ r)

Identity: c−1 is the identity element. For any element p ∈ G, we get:

p∗ c−1 = p◦ c◦ c−1 = p◦ eG = p and c−1 ∗ p = c−1 ◦ c◦ p = eG ◦ p = p

where, eG ∈ G is the identity element with respect to the group (G,◦).

Inverse: For any element p ∈ G, let p′ ∈ G be its inverse with respect to ∗. Now, by definition we should get

p∗ p′ = c−1 = p′ ∗ p.

∴ p◦ c◦ p′ = c−1 or p′ ◦ c◦ p = c−1 ⇒ p′ = c−1 ◦ p−1 ◦ c−1

where, p−1 is the inverse of p with respect to the operation ◦.

— Page 3 of 3 —


