Date: Nov 16,

(CS21201 Discrete Structures, Autumn 2021-2022
Third Test

2021 Time: 10:15am—-11:30am Maximum marks: 40

1. Consider the following three sets.

N
A
B =

The set of all infinite bit sequences,
The set of all infinite bit sequences containing two consecutive 0’s (at least once),

The set of all infinite bit sequences not containing two consecutive 0’s.

In the class, we have seen that S is uncountable. This exercise deals with the countability/uncountability of

A and B.

(a) Propose an injective map f : S — A, and argue about the countability/uncountability of A.

Solution Take an

take f(a

£(000..

element (an infinite bit sequence) @ € S. If a does not contain 0, that is, if o« = 111...
) =00111...1.... Otherwise, let & be the string obtained by duplicating the first 0 in @, and
define f(at) = 1&. For example, f(010101...) = 10010101..., f(OI1l...1...) = 100111...1
.0...)=10000...0....

The injective map implies |S| < |A|. But S is already uncountable, so A is uncountable too.

(b) Prove whether B is countable or uncountable.

1..
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.

, and
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Solution B is uncountable. Let T be the set of all infinite sequences over the alphabet {1,2}. Define amap g: 7 — B

as follows. Take any 8 € T, and replace every occurrence of 2 by 01 to get the string B, and define g(B) =

B.

Since we replace all occurrences of 2 by 01, [3 does not contain any 2, so ﬁ € S. Moreover, the construction
does not introduce two consecutive 0’s in [3 S0 ﬁ € B too, that is, g is well-defined. Finally, it is easy to see that

g is injective (indeed g is a bijection). It follows that |T'| < |B|, and like A, the set B is uncountable too.

2. Consider the sequence ag,ay,an, ... defined recursively as follows.

apg —

ai

a

a, =

(a) Derive a closed-form expression for the (ordinary) generating function A(x) = ap +ajx+ ax* 4 -

2a, >+ a, 3+2 foralln > 3.

a,x" 4 --- of the sequence.

Solution We have

Alx) = ao+arx+ax* + Z apx"
n>3
= x4+27+ Z (2ay—2+ay—3+2)x"
n=3
= x4+27+2%° Z Ay X" 2+ Z Ap_3xX"3 42 Z X3
n>=3 n>=3 n>=3
2 2 3 2
= x+20°+2x°(A(x) —0) +xX°A(x) + T
2
— (224 +
1—x
x+x2 x(1+x) X

Ax) =

(b) From the closed-form expression of A(x) derived in Part (a), establish that a,, = F,,;» — 1 for all n

(1—x)(1—2x2—x3) (I=x)(1+x)(1 —x— x2) (1—x)(1—x—x2)"

where Fy, F1, F3,. .. is the Fibonacci sequence. Use no other method.

— Page 1 0of 3 —

€))

20,

©))



Solution We can write

X A Bx+c

(1—x)(1—x—x2) —x T T—x—

Solving gives A = —1 and B=C = 1, that is,

1+x 1
A(x) = 5

T l—x—x

1—x

The OGF of the Fibonacci sequence is %, that is,

—X—X 1—x—

implies that ]
—x—
have a, = F,+ F,4+1 — 1 =F,1p — 1 foralln > 0.

3. Solve the following recurrence, and obtain the closed-form expression for aj,.

1
a, =8ay,—p—16a,_4+2" (forn>4) with ay=1, a;= 2

Note: Use of generating functions is not allowed in this exercise.
Solution The characteristics equation for the homogeneous part of the given recurrence is:

* =87 +16=0 = (r—2)*(r+2)*=0

X
T2 generates Fo, F1,F3,.

1
5 generates F1,F5, F3, ..., Fyqq,.... Finally, T generates 1,1,1,....
X —X

7
" ap =30, a3 =41.

. F,,.... This

Therefore, we

which derives the four roots as, 2, 2, —2, and —2. Hence, the general form of the homogeneous solution is:

a’) = (A+Bn)2" + (C+ Dn)(—2)".
From the given recurrence, we also get the general form of the particular solution is:
a,(lp ) — En?2",

Solving for the particular solution constant from the following:
1
En®2" =8E(n—2)*2" 2~ 16E(n—4)%2""*+2",  weget E= g

Therefore, the final generic solution form is: (a,, = ag,h) + aslp ))

1
a, = (A+Bn)2" + (C+Dn)(-2)" + §n22”.

Now, solving for the constants in the above equation, we find:

ag = 1 = A4+C

1
a =1 = 24+2B-2C-2D+ 4

a = 30 = 4A+8B+4C+8D+2
a3 = 41 = 8A+24B—-8C—-24D+9

whichyields A=1, B=2, C=0, D=1.So,the final solution to the given recurrence is:

1 1
ay = 2"+ 202" 4 n(=2)" + gn2" = [1 o+ gnz} 2" £ n(=2)", n>0.

4. (a) LetA =7 x7Z,and A a fixed (constant) positive integer. Define two operations & and ® on A as

(a,b)® (c,d) = (a+c,b+d),
(a,b) ®(c,d) = (ad+bc,bd+ Lac).
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A is a commutative ring with identity under these two operations. You do not have to verify the ring axioms,
but only mention what the additive and the multiplicative identities are in A (no need to prove their identity
properties). Also, prove that A is an integral domain if and only if A is not a perfect square. 2+4

Solution Additive identity: (0,0). Multiplicative identity: (0,1).

Suppose that A4 is not a perfect square, and (a,b) ® (¢,d) = (0,0), that is, ad + bc = 0 and bd + Aac = 0. But
then, a(bd + Aac) — b(ad + bc) = 0, that is, (Aa> — b*)c = 0. Since A is not a perfect square, we cannot have
Aa®> —b*> =0or A = (b/a)*. Therefore we must have ¢ = 0. This in turn implies ad = 0 and bd = 0. If d = 0,
we have ¢ = d = 0, whereas if d # 0, we have a = b = 0. That is, A does not contain non-zero zero divisors.

Conversely, let = 2. As derived above, we see that La*> — b*> = 0 is a necessary condition for the existence of
non-zero zero divisors. We need to show that this condition is also sufficient. Taking a = 1 and b = o satisfies
the condition. We should also have ad +bc = 0, that is, % = 75, that is, we can take c = 1 and d = —«. But then,
bd 4+ Aac = —a* + 24 = 0. Since (1, ) and (1,—a) are non-zero elements of A, and (1,a) ® (1, —a) = (0,0),
A is not an integral domain.

(b) Let (G,o0) be a group, and ¢ a fixed element of G. Define a binary operation « on G by axb =aocob
for all a,b € G. Prove that (G, ) is a group, clearly showing that all the properties of a group are satisfied. (4)

Solution (G, x) is a group, because it satisfies the following properties of a group.

Closure: Forany p,q€ G, pxq=pocogq € G, since ¢ € G and G is closed under the operation o.

Associativity: For any p,q,r € G, since G is associative under the operation o, we get:

(p*xq)xr=(pocog)ocor=poco(gocor)=px(qx*r)
Identity: ¢! is the identity element. For any element p € G, we get:

p>|<c_1 :pococ_1 =poeg=p and C_l*p:C_IOCOpzeGOp:p

where, e € G is the identity element with respect to the group (G, o).

Inverse: For any element p € G, let p’ € G be its inverse with respect to *. Now, by definition we should get
pxp =c'=p'p.

cs.pocop=c' or pocop=c! = p=cloploc!

where, p~' is the inverse of p with respect to the operation o.
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