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1. Prove that the following C function terminates for all non-negative integer inputs a,b,c. Here, the divisions

by 2 are to be considered as divisions of int variables. (10)

void wow ( int a, int b, int c )

{

int r, s, t;

while (1) {

if ((a == b) || (b == c) || (c == a)) break;

r = (a + b) / 2; s = (b + c) / 2; t = (c + a) / 2;

a = r; b = s; c = t;

}

}

Solution The loop in the function maintains the following two invariance properties.

(1) a,b,c always remain non-negative.

(2) max(a,b,c) decreases strictly from one iteration to the next.

The first invariance is obvious. In order to prove the second invariance, consider the situation a > b > c (the

other situations can be handled analogously). In this case, max(a,b,c) = a. After the loop body is executed

once, the maximum becomes ⌊(a+b)/2⌋6 ⌊(a+(a−1))/2⌋=
⌊

a− 1
2

⌋

= a−1 < a.

Since max(a,b,c) is a non-negative integer by the first invariance, the second invariance implies that the loop

cannot repeat forever.

2. 65 distinct integers are chosen in the range 1,2,3, . . . ,2021. Prove that there must exist four of the chosen

integers (call them a,b,c,d) such that a−b+ c−d is a multiple of 2021. (10)

Solution The total count of 2-subsets of the 65 chosen integers is
(

65
2

)

= 2080 > 2021. So we can find two distinct

subsets S = {a,c} and T = {b,d} of the chosen integers such that a + c ≡ b + d (mod 2021), that is,

a− b+ c− d ≡ 0 (mod 2021). We need to show that S∩ T = /0. Suppose not. Since S and T are distinct,

we must have |S ∩ T | = 1. Say, a = b (but c 6= d). The condition a+ c ≡ b+ d (mod 2021) implies that

c ≡ d (mod 2021). But c and d are chosen in the range [1,2021], so they must be equal, a contradiction.

3. Let ρ and σ be two binary relations over the set A . A composite relation ρ ◦σ over A is defined as

ρ ◦σ =
{

(p,r) | there exists some q ∈ A such that (p,q) ∈ ρ and (q,r) ∈ σ
}

.

Prove the following assertions with precise formal justifications.

(a) If ρ and σ are equivalence relations, then ρ ◦σ is an equivalence relation if and only if ρ ◦σ = σ ◦ρ . (6)

Solution [⇒] Suppose that (x,y) ∈ ρ ◦σ (x,y ∈A ). Since ρ ◦σ is an equivalence relation, we also have (y,x) ∈ ρ ◦σ
(symmetric property). This means that for some α ∈ A , we have (y,α) ∈ ρ and (α,x) ∈ σ . Since ρ and σ
are both equivalence relations, we further get (α,y) ∈ ρ and (x,α) ∈ σ (symmetric property) This means that

(x,y) ∈ σ ◦ρ (by definition). Therefore ρ ◦σ ⊆ σ ◦ρ . Similar arguments (in opposite direction) can be given

to prove σ ◦ρ ⊆ ρ ◦σ , thereby establishing ρ ◦σ = σ ◦ρ .

[⇐] Since ρ and σ are both equivalence relations, (x,x) ∈ ρ as well as (x,x) ∈ σ (for all x ∈ A ). By the

definition of composite relations, we immediately have (x,x) ∈ ρ ◦σ , proving that ρ ◦σ is reflexive.

If (x,y) ∈ ρ ◦σ (x,y ∈ A ), then for some α ∈ A , we have (x,α) ∈ ρ and (α,y) ∈ σ . Since ρ and σ are both

equivalence relations, we have (α,x) ∈ ρ and (y,α) ∈ σ (symmetric property). This means that (y,x) ∈ σ ◦ρ
(by definition). Finally, ρ ◦σ = σ ◦ρ implies (y,x) ∈ ρ ◦σ . This proves that ρ ◦σ is symmetric.

Let x,y,z ∈ A . Suppose that (x,y) ∈ ρ ◦σ and (y,z) ∈ ρ ◦σ . Since (x,y) ∈ ρ ◦σ , there exists α ∈ A such

that (x,α) ∈ ρ and (α,y) ∈ σ . Since (y,z) ∈ ρ ◦σ , there exists β ∈ A such that (y,β ) ∈ ρ and (β ,z) ∈ σ . But
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then, since (α,y) ∈ σ and (y,β ) ∈ ρ , we have (α,β ) ∈ σ ◦ρ (by definition). It is given that σ ◦ρ = ρ ◦σ , so

(α,β ) ∈ ρ ◦σ , that is, there exist δ ∈ A , such that (α,δ ) ∈ ρ , and (δ ,β ) ∈ σ . Since ρ is transitive, and (x,α)
and (α,δ ) are in ρ , we have (x,δ ) ∈ ρ . Moreover, since σ is transitive, and (δ ,β ) and (β ,z) are in σ , we have

(δ ,z) ∈ σ . By definition, we then have (x,z) ∈ ρ ◦σ , that is, ρ ◦σ is transitive.

(b) The inverse of a relation τ over A is defined as τ−1 =
{

(q, p) | (p,q) ∈ τ
}

(p,q ∈ A ). Prove that

(ρ ◦σ)−1 = (σ−1 ◦ρ−1). (4)

Solution Let (y,x) ∈ (ρ ◦σ)−1 for x,y ∈ A . By definition, (x,y) ∈ (ρ ◦σ), that is, for some α ∈ A , we have (x,α) ∈ ρ
and (α,y) ∈ σ . This also implies that (α,x) ∈ ρ−1 and (y,α) ∈ σ−1. Therefore (y,x) ∈ σ−1 ◦ρ−1, concluding

that (ρ ◦σ)−1 ⊆ (σ−1 ◦ρ−1).

On the other hand, let (y,x) ∈ σ−1 ◦ ρ−1 for x,y ∈ A . Then, for some α ∈ A , we have (y,α) ∈ σ−1 and

(α,x) ∈ ρ−1 (by definition). This also implies that (α,y) ∈ σ and (x,α) ∈ ρ . Since (x,y) ∈ ρ ◦σ , we have

(y,x) ∈ (ρ ◦σ)−1, concluding that (σ−1 ◦ρ−1)⊆ (ρ ◦σ)−1.

Together, we have proved that (ρ ◦σ)−1 = (σ−1 ◦ρ−1).

4. Let P(S) denote the power set of S. For a function f : X →Y , define two functions g : P(A)→ P(B) and

h : P(B)→ P(A) as

g(A) =
{

b | ∃ a ∈ A, f (a) = b
}

, and

h(B) =
{

a | f (a) ∈ B
}

for all A ⊆ X and B ⊆ Y . Prove the following assertions with precise formal justifications.

(a) f is injective if and only if h(g(A)) = A for all A ⊆ X . (5)

Solution [If] To show that if h(g(A)) = A for all A ⊆ X , then f is injective.

Let f (x1) = f (x2) for some x1,x2 ∈ X . Then, x1 ∈ h(g({x1})). But h(g({x1})) = h({ f (x1)}) =
h({ f (x2)}) = h(g({x2})) = {x2} (by taking A = {x2} in the hypothesis). It follows that x1 ∈ {x2},

that is, x1 = x2.

[Only if] To show that if f is injective, then h(g(A)) = A for all A ⊆ X .

[A ⊆ h(g(A))] a ∈ A ⇒ f (a) ∈ g(A)⇒ a ∈ h(g(A)).

[h(g(A)) ⊆ A] a ∈ h(g(A))⇒ f (a) ∈ g(A)⇒ ∃x ∈ A, f (x) = f (a)⇒ x = a (since f is injective)

⇒ a ∈ A.

(b) f is surjective if and only if g(h(B)) = B for all B ⊆ Y . (5)

Solution [If] To show that if g(h(B)) = B for all B ⊆ Y , then f is surjective.

Take any b ∈ Y , and B = {b}. By hypothesis, g(h(B)) = B = {b}. This implies that there exists

a ∈ h(B) such that f (a) = b. Since h(B)⊆ X , it follows that f is surjective.

[Only if] To show that if f is surjective, then g(h(B)) = B for all B ⊆ Y .

[g(h(B)) ⊆ B] Let b ∈ g(h(B)). By the definition of g, there exists a ∈ h(B) such that f (a) = b.

But then by the definition of h, we have f (a) ∈ B, that is, b ∈ B.

[B⊆ g(h(B))] Let b∈B. Since f is surjective, we have b= f (a) for some a∈X . By the definition

of h, we then have a ∈ h(B). By the definition of g, we have f (a) ∈ g(h(B)), that is, b ∈ g(h(B)).
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