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Second Test
Date: Oct 05, 2021 Time: 10:15am—11:30am Maximum marks: 40

1. Prove that the following C function terminates for all non-negative integer inputs a, b, c. Here, the divisions
by 2 are to be considered as divisions of int variables. (10)

void wow ( int a, int b, int ¢ )

{
int r, s, t;
while (1) {
if ((@ ==Db) || (b ==1¢c) || (¢ == a)) break;
r=(a+b) /2, s=((b+c)/ 2 t=(c+a)/ 2;
a=r; b=s; c=t;
}
}

Solution The loop in the function maintains the following two invariance properties.

(1) a,b,c always remain non-negative.
(2) max(a,b,c) decreases strictly from one iteration to the next.

The first invariance is obvious. In order to prove the second invariance, consider the situation @ > b > ¢ (the
other situations can be handled analogously). In this case, max(a,b,c) = a. After the loop body is executed

once, the maximum becomes |(a+b)/2] < |[(a+(a—1))/2] = |a— 1| =a—1<a.

Since max(a,b,c) is a non-negative integer by the first invariance, the second invariance implies that the loop
cannot repeat forever.

2. 65 distinct integers are chosen in the range 1,2,3,...,2021. Prove that there must exist four of the chosen
integers (call them a, b, c,d) such that a — b+ ¢ — d is a multiple of 2021. (10)
Solution The total count of 2-subsets of the 65 chosen integers is (625) = 2080 > 2021. So we can find two distinct
subsets S = {a,c} and T = {b,d} of the chosen integers such that a + ¢ = b+ d (mod 2021), that is,
a—b+c—d=0(mod2021). We need to show that SN7T = 0. Suppose not. Since S and 7 are distinct,
we must have [SNT| = 1. Say, a =b (but ¢ # d). The condition ¢ + ¢ = b+ d (mod 2021) implies that
¢ =d (mod 2021). But ¢ and d are chosen in the range [1,2021], so they must be equal, a contradiction.

3. Let p and o be two binary relations over the set </. A composite relation p o 6 over < is defined as
poo ={(p,r)| there exists some g € & such that (p,q) € p and (¢,r) € 6'}.

Prove the following assertions with precise formal justifications.

(a) If p and o are equivalence relations, then p o ¢ is an equivalence relation if and only if pooc =cop. (6)

Solution [=] Suppose that (x,y) € poo (x,y € .&7). Since p o0 is an equivalence relation, we also have (y,x) € poo
(symmetric property). This means that for some a € <7, we have (y,@) € p and (¢,x) € 6. Since p and ©
are both equivalence relations, we further get (¢, y) € p and (x,a) € o (symmetric property) This means that
(x,y) € 6 0p (by definition). Therefore p o 6 C ¢ o p. Similar arguments (in opposite direction) can be given
to prove 6 o p C p o o, thereby establishing pooc = cop.

[«<] Since p and o are both equivalence relations, (x,x) € p as well as (x,x) € o (for all x € &7). By the
definition of composite relations, we immediately have (x,x) € p o ¢, proving that p o ¢ is reflexive.

If (x,y) € poo (x,y € &), then for some o € o7, we have (x, ) € p and («,y) € 0. Since p and ¢ are both
equivalence relations, we have (a,x) € p and (y, o) € o (symmetric property). This means that (y,x) € cop
(by definition). Finally, p o 6 = ¢ o p implies (y,x) € p o 6. This proves that p o G is symmetric.

Let x,y,z € o/. Suppose that (x,y) € poo and (y,z) € poo. Since (x,y) € p o0, there exists o € &7 such
that (x, ) € p and (o, y) € 6. Since (y,z) € p o 0, there exists 8 € o such that (y,) € p and (B,z) € o. But
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then, since (o,y) € 6 and (y,8) € p, we have (, ) € 6 op (by definition). It is given that cop = p o 0, s0
(a,B) € poo, thatis, there exist § € <7, such that (¢, 6) € p, and (8, ) € o. Since p is transitive, and (x, o)
and (o, 0) are in p, we have (x,8) € p. Moreover, since o is transitive, and (8, 8) and (f8,z) are in o, we have
(8,z) € 0. By definition, we then have (x,z) € p o 0, thatis, p o 0 is transitive.

(b) The inverse of a relation T over </ is defined as 7' = {(q,p) | (p.q) € T} (p,q € &). Prove that
(poo) ' =(c"top™"). @
Solution Let (y,x) € (poo)~! forx,y € &/. By definition, (x,y) € (p o 5), that is, for some & € <7, we have (x, ) € p

and (a,y) € o. This also implies that (&,x) € p~! and (y, ) € 6. Therefore (y,x) € 6! op~!, concluding
that (poo)™ ' C (o lop™h).

On the other hand, let (y,x) € 6! op~! for x,y € &7. Then, for some & € <7, we have (y,&) € 6~ and
(a,x) € p~! (by definition). This also implies that (et,y) € o and (x, o) € p. Since (x,y) € p o 6, we have
(y,x) € (poo)~!, concluding that (6 'op~!) C (poo)~!.

Together, we have proved that (poc) ™' = (6 lop~1).

4. Let Z(S) denote the power set of S. For a function f : X — Y, define two functions g : #(A) — &(B) and
h: Z(B)— Z(A) as

g(A) = {b|Ja€cA, f(a)=b}, and
h(B) = {a]f(a)EB}

forall A C X and B C Y. Prove the following assertions with precise formal justifications.

(a) fisinjective if and only if h(g(A)) = A forall A C X. (5)

Solution [If] To show that if h(g(A)) = A for all A C X, then f is injective.

Let f(x1) = f(x2) for some x1,x; € X. Then, x1 € h(g({x1})). But h(g({x1})) = h({f(x1)}) =

h({f(x2)}) = h(g({x2})) = {x2} (by taking A = {x»} in the hypothesis). It follows that x; € {x2},
that is, x; = x.

[Only if] To show that if f is injective, then h(g(A)) = A forall A C X.
[ACh(g(A)] acA= fla)cg(A)=achg(A)).

[h(g(A)) CA] a€h(g(A)) = fla) € g(A) = Ax €A, f(x) = f(a) = x = a (since f is injective)
=acA.

(b) f is surjective if and only if g(h(B)) =B forall BCY. 5)
Solution [If] To show that if g(h(B)) = B for all B C Y, then f is surjective.

Take any b € Y, and B = {b}. By hypothesis, g(2(B)) = B = {b}. This implies that there exists
a € h(B) such that f(a) = b. Since h(B) C X, it follows that f is surjective.

[Only if] To show that if f is surjective, then g(h(B)) =B forall BCY.

[g(h(B)) CB] Letb € g(h(B)). By the definition of g, there exists a € h(B) such that f(a) = b.
But then by the definition of &, we have f(a) € B, that is, b € B.

[BC g(h(B))] Letb e B. Since f is surjective, we have b = f(a) for some a € X. By the definition
of h, we then have a € h(B). By the definition of g, we have f(a) € g(h(B)), thatis, b € g(h(B)).
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