1. Prove the following identity for all positive integers $n$.

$$
\binom{2 n}{n}=C(n)+\sum_{k=0}^{n-1}\binom{2 n-2 k-1}{n-k} C(k)
$$

Here, $C(r)$ is the $r$-th Catalan number, and $\binom{s}{t}=\frac{s!}{t!(s-t)!}$ is the binomial coefficient $s$-choose- $t$.
Solution We consider all paths from $(0,0)$ to $(n, n)$ in the grid with $R$ and $U$ movements only. The total count of all such paths is $\binom{2 n}{n}$, whereas $C(n)$ denotes the count of all valid paths (that is, paths that never cross the line $y=x$ ). So the sum on the right side should count the invalid paths from $(0,0)$ to $(n, n)$. Take any such invalid path. By definition, this path crosses the line $y=x$ at least once. Let $k \in\{0,1,2, \ldots, n-1\}$ be the first instance when the path goes from $(k, k)$ to $(k, k+1)$. This being the first instance, the part of the path from $(0,0)$ to $(k, k)$ is a valid one, and the count of such paths is $C(k)$. We have a $U$ movement from $(k, k)$ to $(k, k+1)$. After this, we can choose any path from $(k, k+1)$ to $(n, n)$, and the count of such paths is $\binom{(n-k)+(n-k-1)}{n-k}$. Finally, vary $k$ in the allowed range $0 \leqslant k \leqslant n-1$.
2. From the semester examination results, the head of the CSE Department makes the following observations.
$F_{1}$ : If Andy is meritorious, then Bob is not studious or Paul is not attentive.
$F_{2}$ : If Paul is attentive, then Liya is exceptional.
$F_{3}$ : If Liya is exceptional and Bob is studious, then Andy is meritorious.
$F_{4}$ : Bob is studious.
You task is to answer the question: "Is Paul attentive?"
Frame the arguments logically, and formally deduce (applying logical inferencing rules) the answer being asked here. Present your solution as indicated in the following parts.
(a) Write all the propositions (that you use) with English statements (meaning).

Solution We may use the following propositions.

| $a m$ | $:$ | Andy is meritorious. | $p a$ | $:$ |
| ---: | :--- | :--- | :--- | :--- |
| $b s$ | $:$ | Pobl is is attentive. |  |  |
| le |  | Padious. | Liya is exceptional. |  |

(b) Build a suitable propositional logic formula to encode each of the four statements $F_{1}-F_{4}$ given above.

Solution The proposition logic encodings are as follows.

$$
\begin{array}{ll}
F_{1}: a m \rightarrow(\neg b s \vee \neg p a) & F_{3}:(l e \wedge b s) \rightarrow a m \\
F_{2}: p a \rightarrow l e & F_{4}: b s
\end{array}
$$

We claim that we shall derive the goal $\quad G: \neg p a$.
(c) Use logical inferencing rules to derive the answer, and conclude whether Paul is attentive or not.

Solution The logical deduction procedure is given in the following.

Conclusion: Paul is not attentive.
3. Consider the following statements.
$F_{1}$ : Tony and Mike are fans of Sachin Tendulkar.
$F_{2}$ : Every fan of Sachin Tendulkar is either a sports-lover, or a commentator, or both.
$F_{3}$ : No commentator likes rain during matches.
$F_{4}$ : All sports-lover likes high-scoring games.
$F_{5}$ : Mike dislikes whatever Tony likes and likes whatever Tony dislikes.
$F_{6}$ : Tony likes rain during matches and high-scoring games.
Your tasks are to do the following.
(a) Write all the predicates (that you use) with English statements (meaning).

Solution We may use the following predicates.
$\operatorname{fan}(x)$ : $x$ is a fan of Sachin Tendulkar. comment $(x): x$ is a commentator. splove $(x)$ : $x$ is a sports-lover.

$$
\operatorname{likes}(x, y): x \text { likes } y .
$$

(b) Encode the above statements in predicate (first-order) logic.

Solution The predicate (first-order) logic encodings are as follows.

$$
\begin{array}{lrl}
F_{1}: \operatorname{fan}(\text { Tony }) \wedge \operatorname{fan}(\text { Mike }) & F_{5}: & \forall x[(\text { likes }(\text { Tony }, x) \rightarrow \neg \text { likes }(\text { Mike }, x)) \\
F_{2}: \forall x[\text { fan }(x) \rightarrow(\text { splove }(x) \vee \operatorname{comment}(x))] & & \wedge(\neg \text { likes }(\text { Tony }, x) \rightarrow \operatorname{likes}(\text { Mike }, x))] \\
F_{3}: \forall x[\operatorname{comment}(x) \rightarrow \neg \operatorname{like}(x, \text { MRain })] & F_{6}: \operatorname{likes}(\text { Tony }, \text { MRain }) \wedge \text { likes }(\text { Tony }, \text { HScore })
\end{array}
$$

(c) Use logical inferencing techniques (deduction rules) to prove that
G : "There is a fan of Sachin Tendulkar who is a commentator, but not a sports-lover."

Solution The goal statement can be encoded as follows.

$$
G: \exists x[\text { fan }(x) \wedge \operatorname{comment}(x) \wedge \neg \text { splove }(x)] \Rightarrow \neg G: \forall x[\neg \operatorname{fan}(x) \vee \neg \text { comment }(x) \vee \text { splove }(x)]
$$

Now, $\left(F_{1} \wedge F_{2} \wedge F_{3} \wedge F_{4} \wedge F_{5} \wedge F_{6} \rightarrow G\right)$ is valid $\quad \Rightarrow \quad\left(F_{1} \wedge F_{2} \wedge F_{3} \wedge F_{4} \wedge F_{5} \wedge F_{6} \wedge \neg G\right)$ is unsatisfiable.
Eliminating $\forall x$ quantifier (as it implicitly denotes wherever $x$ appears), the clauses formed by the above formulas are:
$C_{11}:$ fan(Tony)
$C_{51}: \neg$ likes $($ Tony,$x) \vee \neg$ likes (Mike, $\left.x\right)$
$C_{12}:$ fan(Mike)
$C_{52}$ : likes(Tony, $\left.x\right) \vee$ likes(Mike, $x$ )
$C_{2}: \neg f a n(x) \vee$ splove $(x) \vee \operatorname{comment}(x)$
$C_{61}$ : likes(Tony,MRain)
$C_{3}: \neg \operatorname{comment}(x) \vee \neg$ like $(x$, MRain $)$
$C_{62}$ : likes(Tony,HScore)
$C_{4}: \neg$ splove $(x) \vee$ likes ( $x, H$ Score $)$
$C_{\neg G}: \neg \operatorname{fan}(x) \vee \neg$ comment $(x) \vee$ splove $(x)$

The deduction procedure is given in the following.

$$
\begin{aligned}
& \begin{aligned}
C_{2} & : \neg \text { fan }(x) \vee \text { splove }(x) \vee \text { comment }(x) \\
C_{\neg G} & : \neg \text { fan }(x) \vee \neg \text { comment }(x) \vee \text { splove }(x) \\
\therefore D_{1} & : \neg \text { fan }(x) \vee \text { splove }(x)
\end{aligned} \\
& \begin{aligned}
& C_{51}: \neg \text { likes }(\text { Tony }, x) \vee \neg \text { likes }(\text { Mike }, x) \\
& C_{62}: \\
& \hline \therefore D_{2}: \text { likes }(\text { Tony, } \text { HSCore }) \\
& \hline \text { likes }(\text { Mike }, \text { HScore })
\end{aligned}
\end{aligned}
$$

4. All the integers in the sequence $2021,20821,208821,2088821,20888821, \ldots$ (with any non-negative number of occurrences of the digit 8 between 20 and 21) are divisible by a common prime $p$. Find $p$, and prove the assertion. No credits without a valid proof. You may use $45^{2}=2025$ for simplifying your calculations.

Solution The $n$-th integer in the sequence is $a_{n}=208^{n} 21$, where $8^{n}$ is the $n$-fold repetition of the digit 8 . We show by induction on $n$ that $a_{n}$ is divisible by 47 for all $n \geqslant 0$.
[Basis] $a_{0}=2021=2025-4=45^{2}-2^{2}=(45-2)(45+2)=43 \times 47$.
[Induction] Suppose that $a_{n}$ is divisible by 47. We have

$$
\begin{aligned}
a_{n+1} & =20888 \ldots 821, \\
a_{n} & =2088 \ldots 821, \\
a_{n+1}-a_{n} & =18800 \ldots 000 .
\end{aligned}
$$

Since $188=47 \times 4$, the inductive step is established. (Also note that $a_{n+1}-a_{n}$ is not divisible by 43 .)

