
Stamp / Signature of the Invigilator

EXAMINATION (Mid Semester) SEMESTER (Autumn)

 Roll Number Section Name

 Subject Number C S 3 1 0 0 3 Subject Name Compilers

 Department / Center of the student Additional Sheets

Important Instructions and Guidelines for Students

To be filled in by the examiner

 Question Number 1 2 3 4 5 6 7 8 9 10 Total

 Marks obtained

Marks Obtained (in words) Signature of the Examiner Signature of the Scrutineer

INDIAN INSTITUTE OF TECHNOLOGY
KHARAGPUR

1. You must occupy your seat as per the Examination Schedule/Sitting Plan.

2. Do not keep mobile phones or any similar electronic gadgets with you even in the switched off mode.

3. Loose papers, class notes, books or any such materials must not be in your possession, even if they are irrelevant to the subject
 you are taking examination.

4. Data book, codes, graph papers, relevant standard tables/charts or any other materials are allowed only when instructed by the
 paper-setter.

5. Use of instrument box, pencil box and non-programmable calculator is allowed during the examination. However, exchange of
 these items of any other papers (including question papers) is not permitted.

6. Write on both sides of the answer script and do not tear off any page. Use last page(s) of the answer script for rough work.
 Report to the Invigilator if the answer script has torn or distorted page(s).

7. It is your responsibility to ensure that you have signed the Attendance Sheet. Keep your Admit Card/Identity Card on the desk for
 checking by the invigilator.

8. You may leave the examination hall for wash room or for drinking water for a very short period. Record your absence from the
 Examination Hall in the register provided. Smoking and the consumption of any kind of beverages are strictly prohibited inside the
 Examination Hall.

9. Do not leave the Examination Hall without submitting your answer script to the invigilator. In any case, you are not allowed to
 take away the answer script with you. After the completion of the examination, do not leave the seat until the invigilators collect
 all the answer scripts.

10. During the examination, either inside or outside the Examination Hall, gathering information from any kind of sources or exchanging
 Information with others or any such attempt will be treated as ‘unfair means’. Do not adopt unfair means and do not indulge in
 unseemly behavior.

Violation of any of the above instructions may lead to severe punishment.

Signature of the Student

CS31003 COMPILERS

AUTUMN 2025 – 2026
MID-SEMESTER EXAMINATION

20-SEPTEMBER-2025, 2:00PM – 4:00PM

MAXIMUM MARKS: 75

Instructions to students

• Write your answers in the question paper itself.

• Answer all questions.

• Write in the blank spaces provided in the questions. Use the empty pages at the end for rough work. Please
avoid supplementary sheets. The answers to all the questions must be written in this question paper only. If
you continue some answer to the Rough-Work pages, please supply an appropriate pointer in your answer.

• Do not write anything on this page. Questions start from the next page (Page 3).

• If you need to make any assumptions in some questions, write them clearly in your respective answers.

― PAGE 2 OF 16 ―

1. (a) Write a regular expression for a date in the dd/mm/yy format. Here, dd is an integer in the range 1 – 31, mm is
an integer in the range 1 – 12, and yy is a 2-digit or a 4-digit integer. A one-digit day or month can be specified by
a single digit with or without a single leading zero. Your regular expression does not need to check the validity of a
date. For example, 29/2/09 and 31/09/2025 are considered valid, whereas 32/8/99 and 12/12/345 are not. [6]

In the lex format, the regular expression can be written as follows.

DD (0?[1-9])|[1-2][0-9]|3[0-1])
MM (0?[1-9]|1[0-2])
YY ([0-9][0-9])?[0-9][0-9]
DATE DD/MM/YY

(b) Assume that a compiler works on a subset of C, and accepts tokens of the types KWD, ID, NUM, OP, and PUNC
only (standing respectively for keywords, identifiers, numbers, operators, and punctuation symbols). Consider the
following code snippet in that subset of C.

int prod = 1;
while (prod <= n) prod *= 2;

For this code snippet, identify the sequence of lexemes, and the respective token types and token values for the
lexemes. Present your answer in the following tabular format. The last token is given below as an example. [7]

Lexeme Token Type Token Value

int

prod

=

1

;

while

(

prod

<=

n

)

prod

*=

2

;

KWD

ID

OP

NUM

PUNC

KWD

PUNC

ID

OP

ID

PUNC

ID

OP

NUM

PUNC

The keyword int (if stored in symbol table, reference to that entry)

Reference to the symbol-table entry for prod

The operator ASSIGNMENT

Integer constant 1

Statement delimiter

The keyword int (if stored in symbol table, reference to that entry)

Left parenthesis

Reference to the symbol-table entry for prod

Comparison operator less than or equal to

Reference to the symbol-table entry for n

Right parenthesis

Reference to the symbol-table entry for prod

Operator multiply by

Integer constant 2

Statement delimiter or Semi-colon

― PAGE 3 OF 16 ―

2. The following grammar has terminals 0, 1, and 2, and non-terminals S (start symbol), T, E, F, and A.

(1) S → 0 T (2) S → E 2 (3) S → F 1
(4) T → E 1 (5) T → F 2
(6) E → A (7) F → A (8) A → ε

(a) Draw the LR(1) automaton for this grammar, in the space below. Number the states as 0 (the start state), 1 (the
accept state), 2, 3, … [9]

― PAGE 4 OF 16 ―

State 0

S′ → . S , $
S → . 0 T , $
S → . E 2 , $
S → . F 1 , $
E → . A , 2
F → . A , 1
A → . , 1 / 2

State 1

S′ → S . , $
Accept

S $

State 2

S → 0 . T , $
T → . E 1 , $
T → . F 2 , $
E → . A , 1
F → . A , 2
A → . , 1 / 2

0
State 3

S → 0 T . , $

T

State 4

T → E . 1 , $

State 5

T → F . 2 , $

State 6

E → A . , 1
F → A . , 2

E

F

A

State 7

T → E 1 . , $

State 8

T → F 2 . , $

2

1

State 9

E → A . , 2
F → A . , 1

State 10

S → F . 1 , $

State 11

S → E . 2 , $

F E

A

State 12

S → F 1 . , $

State 13

S → E 2 . , $

21

(b) Using the LR(1) automaton of Part (a), construct the (canonical) LR(1) parsing table for the grammar (number
the productions as given). From the table, justify that the given grammar is (canonical) LR(1). [9]

STATE
ACTION GOTO

0 1 2 $ S T E F A

0 s2 1 11 10 9

1 Accept

2 3 4 5 6

3 r1

4 s7

5 s8

6 r6 r7

7 r4

8 r5

9 r7 r6

10 s12

11 s13

12 r3

13 r2

No multiple entries in any cell No conflicts The given grammar is LR(1)⇒ ⇒

(c) Mention clearly which of the states in the LR(1) automaton of Part (a) can be merged to form the LALR(1)
automaton. You do not have to draw the LALR(1) automaton. From the merged states, conclude (with
justification) whether the given grammar is LALR(1). [4]

― PAGE 5 OF 16 ―

State 69

E → A . , 1 / 2
F → A . , 1 / 2

The only merging happens between the states 6 and 9, giving the merged state 69 as follows. This state has a reduce-reduce conflict. So the
given grammar is not LALR(1).

3. Think of a program that starts with a sequence A of declarations, and that ends with a sequence B of computations.
Between these two sequences, there is an optional part. The programmer may write two steps of computation (user
input, and computing sizes of dynamic arrays), and a set of subsequent declarations (of dynamic arrays). Let us
denote each declaration step by d, and each computation step by c. In this exercise, we treat d and c as terminal
symbols. Since the declaration steps and the computation steps should be carried out in the given sequence, we
define the grammar of a program (or program pattern) P (the start symbol) as follows. In the grammar, the non-
terminal symbols A and B generate non-empty sequences of declaration steps and computation steps, respectively.

P → A B | A c c A B
A → A d | d
B → B c | c

(a) Draw the LR(1) automaton for this grammar, in the space below. [9]

― PAGE 6 OF 16 ―

P′ → . P , $
P → . A B , $
P → . A c c A B, $
A → . A d , c / d
A → . d , c / d

P′ → P . , $

P → A . B , $
P → A . c c A B, $
A → A . d , c / d
B → . B c , c / $
B → . c , c / $

P → A B . , $
B → B . c , c / $

B → B c . , c / $

P

A

$ Accept

B
c

A → d . , c / d

d P → A c . c A B, $
B → c . , c / $

A → A d . , c / d

d

c

P → A c c . A B, $
A → . A d , c / d
A → . d , c / d

c

P → A c c A . B, $
A → A . d , c / d
B → . B c , c / $
B → . c , c / $

A

P → A c c A B . , $
B → B . c , c / $

B

d

d

c

B → c . , c / $

c

(b) Form the automaton of Part (a), conclude whether the given grammar is canonical LR(1) (do not to prepare the
parsing table). Is the grammar LALR(1)? Justify. [2]

(c) Since the above grammar uses left recursion, this grammar is obviously not LL(1). Propose an LL(1) grammar
for the given language. (Warning: Removal of left recursion alone will not be sufficient.) [4]

― PAGE 7 OF 16 ―

Since the LR(1) automaton contains one shift-reduce conflict (marked by red), the grammar in question is not LR(1).

There is no merging possibility in the LR(1) automaton, that is, the LR(1) automaton is the LALR(1) automaton too. The same shift-reduce
conflict stays in the LALR(1) automaton, causing the grammar to be not LALR(1).

Let P first generate the sequence of initial non-empty sequence of declarations followed by only one c, in a non-left-recursive manner.

P → d P′
P′ → d P′ | c Q

Q first checks if any other symbol is present in the input. If not, we have an input of the form d + c. Otherwise, the next symbol must be c.

Q → ε | c R

Now, R can be either the second set of declarations followed by the computations, or the remaining part of the computation (may be
empty).

R → A c B | B

A generates one or more declarations, whereas B generates zero or more computations.

A → d A′
A′ → ε | d A′

B → ε | c B

(d) Prepare the LL(1) parsing table for your grammar of Part (c). From the table, argue that your grammar of
Part (c) is actually LL(1). [6]

― PAGE 8 OF 16 ―

We start by computing the FIRST and FOLLOW values of the non-terminals.

P → d P′ FIRST(P) = { d } FOLLOW(P) = { $ }
P′ → d P′ | c Q FIRST(P′) = { d , c } FOLLOW(P′) = { $ }
Q → ε | c R FIRST(Q) = { ε , c } FOLLOW(Q) = { $ }
R → A c B | B FIRST(R) = { ε , d , c } FOLLOW(R) = { $ }
A → d A′ FIRST(A) = { d } FOLLOW(A) = { c }
A′ → ε | d A′ FIRST(A′) = { ε , d } FOLLOW(A′) = { c }
B → ε | c B FIRST(B) = { ε , c } FOLLOW(B) = { $ }

From these, the LL(1) parsing table can be derived as follows.

 c d $

P P → d P′

P′ P′ → c Q P′ → d P′

Q Q → c R Q → ε

R R → B R → A c B

A A → d A′

A′ A′ → ε A′ → d A′

B B → c B B → ε

Since no cells in the LL(1) parsing table contains multiple entries, the grammar of Part (c) is LL(1).

4. Consider the C-style declaration of a structure along with variables of that structure type, as illustrated below.

struct xyz123 {
 int a, b, c;
 float d, e[20], f;
 char g[15];
} r[8], s, t;

A grammar for this construct is given below. For simplicity, the grammar deals only with the basic data types
char, int, and float, and with variables and one-dimensional arrays of basic and structure types. In our grammar,
S is the start symbol, D stands for a set of declarations, E generates one line of declaration, and L derives a comma-
separated list of variables and one-dimensional arrays. The terminal symbols are the keywords struct, char, int,
and float, valid names id, positive integers num, and the punctuation symbols opening and closing braces, opening
and closing square brackets, comma, and semicolon.

S → struct id { D } L ;
D → D E | E
E → B L ;
B → char | int | float
L → L , V | V
V → id | id [num]

This exercise deals with a syntax-directed-definition (SDD) scheme for computing the total memory requirement
(also called the size or width) of a single declaration generated by S. To that effect, the total memory requirement
for each line generated by E is computed. Subsequently, the total memory requirement for D is computed as the
sum of the memory requirements of the components E. This sum is rounded up to the nearest multiple of eight, and
is taken as the final size of the structure. The list L in the production for S uses this structure size for computing its
own total memory requirement. Finally, the size of this L will be the size of S.

For example, assume that the size of each int is 4 bytes, of each float is 4 bytes, and of each char is 1 byte.
Then, in the above example, the total size of a, b, and c is 4 + 4 + 4 = 12, the total size of d, e, and f is 4 + 80 + 4
= 88, and the size of g is 15. The sum is 12 + 88 + 15 = 115. Round this up to the nearest multiple of 8, which is
120. So the size of the structure is 120. Finally, the size for the entire declaration is the memory requirement for r,
s, and t, and is equal to 120 × 8 + 120 + 120 = 1200.

(a) In order to perform the above size calculations, the non-terminals use one inherited attribute basesize (size of
a single variable of basic or structure type) and one synthesized attribute memreq (the total memory requirement).
For each variable or array generated by V, memreq is the size of that variable or array (use the sizeof operator to
compute this). For each line (E), memreq is the total size of all the variables and arrays appearing in that line.
Finally, memreq for D is the sum of the total memory requirements of all the lines it generates. These attributes are
to be computed in a bottom-up manner. When the D in the body of the production for S is processed, memreq for
this D is rounded up to the nearest multiple of eight, and passed as basesize to the following L. This L computes its
memreq as in each line generated by E. Finally, the memreq for S will be the memreq of this L.

Complete the SDD against the productions in the respective spaces below. Do not use any global variable. [10]

Production Semantic Rule

S → struct id { D } L ; L.basesize = roundup(D.memreq) ; [You may use roundup(x) = (x + 7) / 8 × 8 (int calculations)]
S.memreq = L.memreq ;

D → D1 E D.memreq = D1.memreq + E.memreq ;

― PAGE 9 OF 16 ―

D → E D.memreq = E.memreq ;

E → B L ; L.basesize = B.basesize ;
E.memreq = L.memreq ;

B → char B.basesize = sizeof(char) ;

B → int B.basesize = sizeof(int) ;

B → float B.basesize = sizeof(float) ;

L → L1 , V
L1.basesize = L.basesize ;
V.basesize = L.basesize ;
L.memreq = L1.memreq + V.memreq ;

L → V V.basesize = L.basesize ;
L.memreq = V.memreq ;

V → id V.memreq = V.basesize ;

V → id [num] V.memreq = V.basesize × num.lexval ;

― PAGE 10 OF 16 ―

(b) Draw the dependency graph (along with the parse tree) for the following declaration.

struct student {
 char name[60];
 float cgpa;
} AbhijitHazra, CS[160];

Do not annotate the parse tree (by computing the attribute values). Only show the vertices (embedded on the parse
tree) and the directed edges of the dependency graph. Clearly show the source and the destination of each edge.
You may draw a non-terminal node as illustrated below (right). [9]

― PAGE 11 OF 16 ―

basesize

memreq

E

Rough Work

― PAGE 12 OF 16 ―

Rough Work

― PAGE 13 OF 16 ―

Rough Work

― PAGE 14 OF 16 ―

Rough Work

― PAGE 15 OF 16 ―

Rough Work

― PAGE 16 OF 16 ―

