
CS39003 Compilers Laboratory
Lab Test 1
28-Aug-2025, 7:15pm–8:15pm
Maximum Marks: 50

[Write your answers in the question paper itself. Be brief and precise. Write proper codes (not pseudocodes).]

In this test, you deal with polynomials. A polynomial f(x) = a0 + a1x + a2x2 + a3x3 + … + adxd is stored in an array as (a0,
a1, a2, a3, … , ad). Assume that each coefficient ai is a (signed) integer. Let us store a polynomial in a static array with
MAXTERMS entries. Zero terms are stored as 0. For example, if MAXTERMS = 16, the polynomial 10x – 4x2 + 5x6 – x7 is
stored as (0, 10, – 4, 0, 0, 0, 5, – 1, 0, 0, 0, 0, 0, 0, 0, 0). We will support named and constant polynomials with the
operations + (addition), – (subtraction), and ′ (derivative). For simplicity, our polynomial expressions will contain no
parentheses. Here is an example of a polynomial assignment: p = f – g′ + (0, 1, 2, 3) – (5, 4, 3, 2, 1)′ – h. Here, p, f, g,
and h are named polynomials, and the parenthesized lists are constant polynomials. If less than MAXTERMS entries are
supplied in a polynomial constant, the unspecified higher-degree coefficients are stored as 0. You are required to write a
recursive LL(1) parser to process a sequence of polynomial assignments. The grammar for a polynomial assignment (a
line in the input file) is given below. The terminal symbols (tokens) are written in bold face. Here, L, E, T, C, and D stand
for a line of input, a polynomial expression, a term in an expression, list of coefficients, and derivative operator (if any).

L → id = E
E → T D E′
E′ → ε | + E | – E
T → (C) | id
C → num C′
C′ → ε | , C
D → ε | ′

FIRST(L) = { id }
FIRST(E) = { (, id }
FIRST(E′) = { ε , + , – }
FIRST(T) = { (, id }
FIRST(C) = { num }
FIRST(C′) = { ε , , }
FIRST(D) = { ε , ′ }

FOLLOW(L) = { \n }
FOLLOW(E) = { \n }
FOLLOW(E′) = { \n }
FOLLOW(T) = { ′ , + , – , \n }
FOLLOW(C) = {) }
FOLLOW(C′) = {) }
FOLLOW(D) = { + , – , \n }

[Lex file]

First, write a lex file poly.l to identify the patterns in the input. The first section (Definitions Section) has the
definitions of the token types (already provided) and of some regular expressions (you write these).

%{
/* Token types to be returned by lex */
#define ID 1 /* Valid name */
#define NUM 2 /* Signed integer */
#define ASGN 3 /* The assignment operator */
#define PLUS 4 /* The addition operator */
#define MINUS 5 /* The subtraction operator */
#define DERIV 6 /* The derivative operator (single forward quote) */
#define LPAREN 7 /* Left parenthesis */
#define RPAREN 8 /* Right parenthesis */
#define COMMA 9 /* Comma used as separator between coefficients of polynomial constants */
#define EOL 10 /* End of line */
%}

/* Define regular expressions for white space, C-type ID’s, and signed integers */ [5]

%%
In the second section (Rules Section), write the actions for white space and the ten token types defined above. Each
action for a token should only return the appropriate token type (and do nothing else). Also add an action to discard
invalid characters, with a warning message. [12]

Roll No: ______________

Name: ___

ws [\t]+
id [a-zA-Z_][a-zA-Z0-9_]*
num [+-]?[0-9]+

%%
In the third section (User Codes Section), write only the relevant function for lex to compile poly.l. Do not write any
main() function here. [2]

[Parser code]

The LL(1) parsing table for our grammar is given below. Your task is to write a recursive descent (predictive) parser
based on this table, in a C file llparser.c. Use C constructs only. You do not need to use STL data types.

id num = + – ′ () , \n
L id = E
E T D E′ T D E′
E′ + E – E ε
T id (C)
C num C′
C′ ε , C
D ε ε ′ ε

Your parsing code defines the poly data type as follows. It uses two global polynomials rval and term needed during
parsing. The next token waiting at the input is stored in the global int variable token. A function llerror() needs to
be invoked in case of a parsing error (accessing an empty entry in the above parsing table).

#define MAXTERMS 32
typedef int poly[MAXTERMS]; /* Polynomial data type */
poly rval, term; /* To be used by the parsing algorithm */
int token; /* The next token from the input */

void llerror (char *msg) { fprintf(stdrr, "*** Parse error: %s\n", msg); exit(1); }

The following functions are to be used in the parsing code. You do not have to implement them. In your code, follow
the prototypes as explained below.

polyinit(f) Initialize f to the zero polynomial
polyadd(f, g) Set f to f + g (you may have f = g)
polysub(f, g) Set f to f – g (you may have f = g)
polydrv(f, g) Store in f the derivative of g (you may have f = g)
polyprn(f) Print the polynomial f
STget(f, name) Read in f the polynomial of the given name from the symbol table (if undefined, set f to 0)
STstr(name,f) Store the polynomial f in the symbol table with the given name (overwrite if already present)

The parser code uses the following mutually recursive functions for the non-terminals in the grammar.

void L(), E(int), E1(), T(), C(int), C1(int), D(); /* E () and C () are renamed as E1() and C1() */′ ′

{ws} { }
{id} { return ID; }
= { return ASGN; }
\({ return LPAREN; }
{num} { return NUM; }
, { return COMMA; }
\) { return RPAREN; }
\+ { return PLUS; }
- { return MINUS; }
' { return DERIV; }
\n { return EOL; }
. { fprintf(stderr, "+++ Invalid character '%c'\n", yytext[0]); }

int yywrap () { return 1; }

We do not use parentheses to group expressions, so the above functions do not need to return anything. We use two
global polynomials rval and term to compute respectively the R-value in an assignment (a polynomial expression),
and each term in the expression. L() initializes rval to 0. Each term is a named polynomial (use symbol-table lookup)
or a literal polynomial (enclosed by parentheses), followed optionally by the derivative operator (single forward quote).
E() initializes term to 0, and T(), C(), C1(), and D() prepare this polynomial in term. E() then adds/subtracts (as
needed) term to/from rval. Finally, L() stores rval in the symbol table. Write below the bodies of the non-terminal
functions. Implement recursive descent (predictive) parsing using the LL(1) parsing table given earlier. [4 × 7]

void L ()
{

}

void E (int op)
/* op is PLUS or MINUS, needed to know whether the next term is to be added to or subtracted from rval */
{

}

void E1 ()
{

}

char *name;

if (token != ID) llerror("ID expected");
name = strdup(yytext);
token = yylex();
if (token != ASGN) llerror("= expected");
token = yylex();
polyinit(rval);
E(PLUS);
STstr(name,rval);
printf("+++ Stored %s = ", name); polyprn(rval);

polyinit(term);
if ((token != ID) && (token != LPAREN)) llerror("id or (expected");
T();
D();
if (op == PLUS) polyadd(rval,term); else if (op == MINUS) polysub(rval,term);
E1();

if (token == EOL) return;
if ((token == PLUS) || (token == MINUS)) {
 op = token;
 token = yylex();
 E(op);
 return;
}
llerror("+, - or \n expected");

void T ()
{

}

The non-terminal functions C() and C1() read a polynomial in term coefficient-by-coefficient. It is therefore necessary
to send to the functions the index at which the next coefficient is to be stored.

void C (int i)
{

}

void C1 (int i)
{

}

void D ()
{

}

int main (int argc, char *argv[])
{
 /* Let lex read from a file (instead of stdin) if a command-line argument is supplied */ [2]

 __
 while (1) {
 token = yylex();

 if (_________________________) break; [1]
 L();
 }
 exit(0);
}

if (token == ID) { STget(term,yytext); token = yylex(); }
if (token == LPAREN) {
 token = yylex();
 C(0);
 if (token != RPAREN) llerror(") expected");
 token = yylex();
}

if (token != NUM) llerror("num expected");
term[i] = atoi(yytext);
token = yylex();
C1(i);

if (token == RPAREN) return;
if (token == COMMA) {
 token = yylex();
 C(i+1);
}

if (token == DERIV) { polydrv(term,term); token = yylex(); }
if ((token != PLUS) && (token != MINUS) && (token != EOL))
 llerror("+ or - or \\n expected");

if (argc > 1) yyin = (FILE *)fopen(argv[1],"r");

 token == 0

