
Stamp / Signature of the Invigilator

EXAMINATION (End Semester) SEMESTER (Autumn)

 Roll Number Section Name

 Subject Number C S 3 1 0 0 3 Subject Name Compilers

 Department / Center of the student Additional Sheets

Important Instructions and Guidelines for Students

To be filled in by the examiner

 Question Number 1 2 3 4 5 6 7 8 9 10 Total

 Marks obtained

Marks Obtained (in words) Signature of the Examiner Signature of the Scrutineer

INDIAN INSTITUTE OF TECHNOLOGY
KHARAGPUR

1. You must occupy your seat as per the Examination Schedule/Sitting Plan.

2. Do not keep mobile phones or any similar electronic gadgets with you even in the switched off mode.

3. Loose papers, class notes, books or any such materials must not be in your possession, even if they are irrelevant to the subject
 you are taking examination.

4. Data book, codes, graph papers, relevant standard tables/charts or any other materials are allowed only when instructed by the
 paper-setter.

5. Use of instrument box, pencil box and non-programmable calculator is allowed during the examination. However, exchange of
 these items of any other papers (including question papers) is not permitted.

6. Write on both sides of the answer script and do not tear off any page. Use last page(s) of the answer script for rough work.
 Report to the Invigilator if the answer script has torn or distorted page(s).

7. It is your responsibility to ensure that you have signed the Attendance Sheet. Keep your Admit Card/Identity Card on the desk for
 checking by the invigilator.

8. You may leave the examination hall for wash room or for drinking water for a very short period. Record your absence from the
 Examination Hall in the register provided. Smoking and the consumption of any kind of beverages are strictly prohibited inside the
 Examination Hall.

9. Do not leave the Examination Hall without submitting your answer script to the invigilator. In any case, you are not allowed to
 take away the answer script with you. After the completion of the examination, do not leave the seat until the invigilators collect
 all the answer scripts.

10. During the examination, either inside or outside the Examination Hall, gathering information from any kind of sources or exchanging
 Information with others or any such attempt will be treated as ‘unfair means’. Do not adopt unfair means and do not indulge in
 unseemly behavior.

Violation of any of the above instructions may lead to severe punishment.

Signature of the Student

CS31003 COMPILERS

AUTUMN 2025 – 2026
END-SEMESTER EXAMINATION

19-NOVEMBER-2025, 2:00PM – 5:00PM

MAXIMUM MARKS: 100

Instructions to students

• Write your answers in the question paper itself.

• Answer all questions.

• Write in the blank spaces provided in the questions. Use the empty pages at the end for rough work. Please
avoid supplementary sheets. The answers to all the questions must be written in this question paper only. If
you continue some answer to the Rough-Work pages, please supply an appropriate pointer in your answer.

• Do not write anything on this page. Questions start from the next page (Page 3).

• If you need to make any assumptions in some questions, write them clearly in your respective answers.

• The Dragon-Book refers to the textbook followed in the class:

Aho, Lam, Sethi, and Ullman, Compilers: Principles, Techniques, and Tools, Second Edition.

― PAGE 2 OF 20 ―

1. [Syntax-directed translation]

The following grammar generates non-empty sequences of bits (0’s and 1’s). Each such sequence is interpreted as a binary
representation of a non-negative integer N. For example, the bit sequence 00101 is a binary representation of 5 (decimal).

N → N B | B
B → 0 | 1

(a) The non-terminals N and B have a synthesized attribute parity (its only allowed values are EVEN and ODD). For
example, the parity of 00101 (the number 5) is ODD, and the parity of 10100 (the number 20) is EVEN. Provide the
semantic actions for computing this attribute. In all the parts, use no extra attributes (except what is given). [4]

Production Semantic action

N → N1 B N.parity = B.parity

N → B N.parity = B.parity

B → 0 B.parity = EVEN

B → 1 B.parity = ODD

(b) Now, we want to determine whether the input number is a multiple of 3. To that effect, we store against N and
B a synthesized attribute rem3 (with allowed values 0, 1, and 2 only) which stands for the remainder of the number
or bit upon division by 3. The input number is divisible by three if and only if rem3 at the root of the parse tree is 0.
Supply the semantic actions for computing rem3. Do not use parity in this part and in the next part. [4]

Production Semantic action

N → N1 B N.rem3 = (2 * N1.rem3 + B.rem3) % 3

N → B N.rem3 = B.rem3

B → 0 B.rem3 = 0

B → 1 B.rem3 = 1

(c) In this part, S generates a signed integer by adding a sign bit (0 means positive, 1 means negative) at the
beginning of a binary string (the magnitude of the integer) generated by N. That is, S generates integers in the
signed-magnitude representation. We now add a new production S → B N (B generates the sign bit). Keep the
productions and semantic actions for N and B as in Part (b). Write below the semantic action for computing rem3
(allowed values are 0, 1, 2 only) of S. For example, 100101 stands for –5 = –2 × 3 + 1, and has rem3 value 1. [2]

Production Semantic action

S → B N
If B.rem3 = 0, then S.rem3 = N.rem3
else

if N.rem3 = 0, then S.rem3 = 0
else N.rem3 = 3 – N.rem3

― PAGE 3 OF 20 ―

2. [Intermediate-code generation]

Translate the following C code snippet to three-address code. Here a[][] is a two-dimensional integer array of
dimension 100 × 100, and i, j, and n are integers. Assume that each integer has width 4. Strictly follow C-style
interpretations of pre- and post-increment operators (++), and of break in switch statements. [10]

do {
 switch (n%3) {
 case 0: a[i][++j] = n++; break;
 case 1: a[i++][j] = n;
 case 2: a[i][j] = ++n;
 }
} while (n < 100);

begin: t1 = n % 3
goto test

L1: t2 = 400 * i
t3 = j + 1
j = t3
t4 = 4 * j
t5 = t2 + t4
a[t5] = n
t6 = n + 1
n = t6
goto next

L2: t7 = 400 * i
t8 = i + 1
i = t8
t9 = 4 * j
t10 = t7 + t9
a[t10] = n

L3: t11 = 400 * i
t12 = 4 * j
t13 = t11 + t12
t14 = n + 1
n = t14
a[t13] = t14
goto next

test: if t1 == 0 goto L1
if t1 == 1 goto L2
if t1 == 2 goto L3

next: if n < 100 goto begin

― PAGE 4 OF 20 ―

3. [Backpatching]

Consider the following grammar of multi-way branching using the keywords if, else, elif (abbreviation of else if),
and endif. A branching statement starts with the keyword if, and is followed by a parenthesized Boolean condition
(B) and then by a list (L) of statements (S). An optional sequence of one or more else-if blocks (each consisting of
the keyword elif, a parenthesized Boolean expression, and a list of statements, in that sequence) follows. Finally,
there is an optional else block (one only). The combined else-if and else part is generated by E. In all the cases, the
branching statement ends with the keyword endif. In the grammar below, A stands for an assignment statement, X
for an expression, and R for a relational operator. The start symbol is L.

L → S | L S
S → A | if (B) L E endif
E → ε | else L | elif (B) L E
B → X R X

Here are some examples of multi-way branching statements generated by this grammar.

if (x >= 0) a = 1; endif
if (x >= 0) a = 1; y = x; else a = 0; y = –x; endif
if (x > 0) a = 1; y = x; elif (x < 0) a = –1; y = –x; else a = 0; y = 0; endif

(a) Prove/Disprove the following two assertions about this grammar.

(i) This grammar suffers from the dangling-else ambiguity (involving if and else only). [2]

(ii) A multi-statement if/elif/else block needs to be enclosed within braces or other delimiters. [2]

(b) We use backpatching (without fall-through optimization) to translate multi-way branching statements to 3-
address codes in single passes. The non-terminals L (list of statements), S (statement), and E (combined else-if and
else part) maintain a synthesized attribute nextlist, and a Boolean expression (B) has two synthesized attributes
truelist and falselist. Each of these lists stores the instruction numbers containing jumps to an unspecified (yet
unknown) instruction number. Later when the jump target is available, backpatching is done by adding this target
to all the instructions stored in the list. Complete the following table by filling out the semantic actions on the right
side, corresponding to the productions on the left side. Use marker non-terminals M and N only, where M.inst
stores the next instruction number that can be obtained in the variable nextinst, and N has a nextlist. Use the
functions makelist(), merge(), and backpatch() as explained in the Dragon-Book (as well as in the class). [14]

Production Semantic action

L → S L.nextlist = S.nextlist

backpatch(L.nextlist, nextinst)

L → L1 M S
L.nextlist = S.nextlist

backpatch(L1.nextlist, M.inst)

― PAGE 5 OF 20 ―

False. The dangling-else ambiguity arises for a statement of the form if (C1) if (C2) S1 else S2. This can be interpreted in two
ways: if (C1) { if (C2) S1 else S2 } and if (C1) { if (C2) S1 } else S2. In the current grammar, the second interpretation
is invalid because of the keyword endif. These two interpretations now should be written in two different ways as follows.

 if (C1) if (C2) S1 else S2 endif endif
 if (C1) if (C2) S1 endif else S2 endif

False. An if block must be followed immediately by one of the keywords elif, else, and endif. An elif block must be followed
immediately by elif, else or endif. An else block must be followed by endif. These keywords act as delimiters for the blocks.

Production Semantic action

S → A S.nextlist = NULL

Rewrite the following production
by adding marker non-terminals at
suitable places.

 S → if (B) L E endif

S → if (B) M1 L N M2 E endif

backpatch(B.truelist, M1.inst)
backpatch(B.falselist, M2.inst)
S.nextlist = merge(merge(L.nextlist, N.nextlist), E.nextlist)

E → ε E.nextlist = NULL

E → else L E.nextlist = L.nextlist

Rewrite the following production
by adding marker non-terminals at
suitable places.

 E → elif (B) L E

E → elif (B) M1 L N M2 E1

backpatch(B.truelist, M1.inst)
backpatch(B.falselist, M2.inst)
E.nextlist = merge(merge(L.nextlist, N.nextlist), E1.nextlist)

B → X1 R X2

B.truelist = makelist(nextinst)
B.falselist = makelist(nextinst + 1)
gen(if X1.addr R.op X2.addr goto –)
gen(goto –)

M → ε M.inst = nextinst

N → ε N.nextlist = makelist(nextinst)
gen(goto –)

― PAGE 6 OF 20 ―

4. [Basic blocks and flow graph]

The following C code computes the binomial coefficient C(n, r) using the identity C(i, j) = C(i – 1, j) + C(i – 1, j – 1).
Assume that 0 ≤ r ≤ n < 20. The code uses a dynamic-programming approach to compute C(n, r) in a two-dimensional
array C[20][20] of integers. All basic variables are of type int.

C[0][0] = 1;
j = 1; while (j <= r) { C[0][j] = 0; j = j + 1; }
i = 1;
while (i <= n) {
 C[i][0] = 1; j = 1;
 while (j <= r) {
 if (j > i) C[i][j] = 0;
 else C[i][j] = C[i–1][j] + C[i–1][j–1];
 j = j + 1;
 }
 i = i + 1;
}

(a) Generate the 3-address code for the above snippet using fall-through optimization that reduces the number of goto
statements (use iffalse in conditional jumps). Do not use any other optimization in this part. Assume that the size
(width) of each int is 4 bytes. Use symbolic labels (L1, L2, L3, and so on) instead of instruction numbers. Name the
temporaries as t1, t2, t3, and so on. Identify the basic blocks by enclosing them in rectangles. Name the basic blocks
as B1, B2, B3, and so on. [8]

+------------------------+ +------------------------+
| t1 = 80 * 0 | Block B1 L7: | t26 = 80 * i | Block B10

t2 = 4 * 0		t27 = 4 * j
t3 = t1 + t2		t28 = t26 + t27
C[t3] = 1		C[t28] = 0
j = 1	+------------------------+	
+------------------------+ L8: | t29 = j + 1 | Block B11

L1: | iffalse j <= r goto L2 | Block B2 | j = t29 |
+------------------------+ | goto L5 |
+ t4 = 80 * 0 | Block B3 +------------------------+
| t5 = 4 * j | L6: | t30 = i + 1 | Block B12

| t6 = t4 + t5 | | i = t30 |
| C[t6] = 0 | | goto L3 |
| t7 = j + 1 | +------------------------+
| j = t7 | L4:
| goto L1 |
+------------------------+

L2: | i = 1 | Block B4

+------------------------+
L3: | iffalse i <= n goto L4 | Block B5

+------------------------+
| t8 = 80 * i | Block B6

| t9 = 4 * 0 |
| t10 = t8 + t9 |
| C[t10] = 1 |
| j = 1 |
+------------------------+

L5: | iffalse j <= r goto L6 | Block B7

+------------------------+
| iffalse j > i goto L7 | Block B8

+------------------------+
| t11 = 80 * i | Block B9

| t12 = 4 * j |
| t13 = t11 + t12 |
| t14 = i – 1 |
| t15 = 80 * t14 |
| t16 = 4 * j |
| t17 = t15 + t16 |
| t18 = C[t17] |
| t19 = i – 1 |
| t20 = 80 * t19 |
| t21 = j – 1 |
| t22 = 4 * t21 |
| t23 = t20 + t22 |
| t24 = C[t23] |
| t25 = t18 + t24 |
| C[t13] = t25 |
| goto L8 |
+------------------------+

― PAGE 7 OF 20 ―

(b) Hand-optimize each basic block individually, by locating common subexpressions, by using constant propagation
and algebraic identities (including strength reduction by applying distributivity), and by eliminating dead code. You do
not have to use the DAG representation of the basic blocks. But give clear justifications (in plain English) for every
optimization step that you use. Do not perform any global optimization here. Do not renumber the temporaries. [8]

The optimization steps are discussed block by block. The basic blocks that cannot be optimized are omitted in the discussion.

B1: By algebraic identities, t1, t2, t3 all evaluate to 0. We do not need to compute them, and instead straightaway set C[0] = 1.
 Optimized block:

C[0] = 1
j = 1

B3: t4 evaluates to 0, and so t6 = t5. So we do not need to compute t4 and t6, and set C[t5] = 0.
Optimized block:

t5 = 4 * j
C[t5] = 0
t7 = j + 1
j = t7
goto L1

B6: Again by using algebraic identities, we avoid computing t9 and t10.
Optimized block:

t8 = 80 * i
C[t8] = 1
j = 1

B9: This block offers several common subexpressions, and recalculation of formulas using the distributive law. t15 can be computed
as t11 – 80, so we can avoid computing t14. We can avoid computing t16, and use t12 for it. Computations of t19 and t20 are
redundant, we can use t15 for t20. By distributive law, we can avoid computing t21, and take t22 = t12 – 4. We can do even better. We
can avoid computing t22 too, and take t23 = t17 – 4.

Optimized block:
t11 = 80 * i
t12 = 4 * j
t13 = t11 + t12
t15 = t11 – 80
t17 = t15 + t12
t18 = C[t17]
t23 = t17 – 4
t24 = C[t23]
t25 = t18 + t24
C[t13] = t25
goto L8

― PAGE 8 OF 20 ―

(c) Draw the flow graph on the optimized basic blocks. Write the 3-address instructions inside each optimized block.
The instructions remaining in the optimized blocks should be in the same sequence as in the original blocks. Retain the
old numbering of the temporaries (although some temporaries are not computed, and some use modified formulas). [8]

― PAGE 9 OF 20 ―

C[0] = 1
j = 0

iffalse j <= r goto B4

t5 = 4 * j
C[t5] = 0
t7 = j + 1

j = t7
goto B2

i = 1

iffalse i <= n goto EXIT

t8 = 80 * i
C[t8] = 1

j = 1

iffalse j <= r goto B12

iffalse j > i goto B10

t11 = 80 * i
t12 = 4 * j

t13 = t11 + t12
t15 = t11 – 80
t17 = t15 + t12
t18 = C[t17]
t23 = t17 – 4
t24 = C[t23]

t25 = t18 + t24
C[t13] = t25

goto B11

t26 = 80 * i
t27 = 4 * j

t28 = t26 + t27
C[t28] = 0

t29 = j + 1
j = t29
goto B7

t30 = i + 1
i = t30
goto B5

ENTRY

EXIT

B1

B3

B4

B2

B5

B6

B7

B8

B9

B10

B11

B12

5. [Target-code generation]

Consider a single basic block consisting of the following seven 3-address instructions. Here, a, b, c, d, e are user-
defined variables, and t1, t2, t3 are compiler-generated temporaries.

t1 = a + d
t2 = b – c
t3 = t1 * t2
e = t3
a = t3 / t1
b = a + t3
c = t1 – c

You have only four registers R1, R2, R3, R4. For every operation, the operands must stay in registers, and the result
is computed in a register. For each 3-address instruction I, use the simple register-selection algorithm getreg(I) of
the Dragon-Book (also taught in the class). At every step, show the register-descriptor table, the address-descriptor
table, and the target code generated. Justify the necessity of load and store instructions, and the choice of each
register by getreg(). For a 3-address instruction x = y op z, the registers are selected for y, z, and x in that order.
Avoid storing temporaries in memory. Assume that the temporaries in a basic block are not used in other blocks
(but user-defined variables are). All ties are broken by giving preference to lower-numbered registers. [18]

3-address
code

Target code
Register descriptor Address descriptor

R1 R2 R3 R4 a b c d e t1 t2 t3

Initialize

a b c d e

Justification:
Initially, all the registers are empty, all variables are in memory, and no temporaries are computed.

t1 = a + d

a d t1 a,R1 b c d,R2 e R3

Justification:
All registers are empty, so a is loaded to R1, d to R2, and t1 is computed in R3.

t2 = b – c

c t2 t1 b a b,R4 c,R1 d e R3 R2

Justification:
R4 is empty, so b is loaded to R4. Now, all registers are loaded. However, t1 will be used later in the
block, whereas a is not live here and d will not be used later (and the latest values of a and d can be
found in the memory), so c is loaded to R1, and t2 is computed in R2.

t3 = t1 * t2
c t3 t1 b a b,R4 c,R1 d e R3 R2

Justification:
Since t1 and t2 are available in registers, they need not be loaded. In order to store the result t3, we
note that t1 and c will be used later, whereas t2 and b will not be used later (and the latest value of b
can be found in memory). Using our tie-breaking policy, we choose R2 to store the t3.

― PAGE 10 OF 20 ―

LD R1,a
LD R2,d
ADD R3,R1,R2

LD R4,b
LD R1,c
SUB R2,R4,R1

MUL R2,R3,R2

No code generated

3-address
code

Target code
Register descriptor Address descriptor

R1 R2 R3 R4 a b c d e t1 t2 t3

e = t3

c e,t3 t1 b a b,R4 c,R1 d R2 R3 R2

Justification:
Since t3 is available in R2, it is not reloaded. The copy is effected by letting e be added to the
register descriptor for R2. Moreover, the address descriptor for e should store the information that
the latest value of e can be found in R2. No code is generated.

a = t3 / t1

c e,t3 t1 a R4 b c,R1 d R2 R3 R2

Justification:
The operands t3 and t1 are available in registers (no loads needed). For storing the result, note that
t3, t1, and c are live at this point, whereas b is not. Moreover, the latest value of b can be found in
memory, so we replace b in R4 by the result. We also adjust the address descriptor for a to R4.

b = a + t3

b e,t3 t1 a R4 R1 c d R2 R3 R2

Justification:
Again the operands a and t3 are available in registers, and need not be loaded. In order to store the
result (in the name of b), we note that R1 stores c. Although c is used later, its latest value can still
be obtained from memory (so the score of R1 is 0). But the latest values of a, t1, and e are only in
registers, so the score of (each of) R2, R3, and R4 is 1. So we choose R1 for b.

c = t1 – c

c e,t3 t1 a R4 b R1 d R2 R3 R2

Justification:
Although t1 is available in R3, c needs to be reloaded. All the registers are of score 1 (containing b,
e, t1, and a, respectively). By our tie-breaking policy, we choose R1 to load c. But before that, we
need to store b. The result (which is c again) can be stored in R1 itself.

End of block

c e,t3 t1 a a,R4 b c,R1 d e,R2 R3 R2

Justification:
We need to write back a, c, and e to memory.

― PAGE 11 OF 20 ―

DIV R4,R2,R3

ADD R1,R4,R2

ST b,R1
LD R1,c
SUB R1,R3,R1

ST a,R4
ST c,R1
ST e,R2

No code generated

6. [Data flow analysis]

Consider the following (optimized) intermediate code which (only) finds the number of swaps required while

partitioning a one-dimensional array a[] (with respect to a pivot element), during quick sort (swaps are not done).

The basic blocks (denoted by Bi) and the data flow graph are shown below. The definitions are denoted by Dj.

(a) Write below the sets gen(B) for all basic blocks B. [4]

gen(B1) = ___

gen(B2) = ___

gen(B3) = ___

gen(B4) = ___

(b) Write below the sets kill(B) for all basic blocks B. [4]

kill(B1) = ___

kill(B2) = ___

kill(B3) = ___

kill(B4) = ___

― PAGE 12 OF 20 ―

D1 : swap = 0

D2 : t1 = 4 * i

D3 : t2 = a[t1]

D4 : t3 = 4 * j

D5 : t4 = a[t3]

D6 : t1 = t1 + 4

D7 : t2 = a[t1]

 if t2 <= pivot goto B2

ENTRY

D8 : t3 = t3 – 4

D9 : t4 = a[t3]

 if t4 > pivot goto B3

D10 : t7 = swap + 1

D11 : swap = t7

 if t1 < t3 goto B2

EXIT

B1

B2

B3

B4

{ D1, D2, D3, D4, D5 }

{ D6, D7 }

{ D8, D9 }

{ D10, D11 }

{ D6, D7, D8, D9, D11 }

{ D2, D3 }

{ D4, D5 }

{ D1 }

(c) For a basic block B, present the generic transfer equations for computing in(B) and out(B). [2]

in(B) = ___

out(B) = ___

(d) In order to compute all reaching definitions (that is, in(B) and out(B) for all basic blocks B), we initialize
out(B) = ∅ for all the basic blocks B (including ENTRY and EXIT). We then carry out a sequence of iterations for
updating in(B) and out(B) for all basic blocks B. Show the iterations (use the format given below for the first
iteration). Also write the reason/criterion for stopping the updating loop. Show your calculations. [10]

Iteration 1

 in(B1) = ___

 in(B2) = ___

 in(B3) = ___

 in(B4) = ___

 out(B1) = __

 out(B2) = __

 out(B3) = __

 out(B4) = __

Show the remaining iterations.

― PAGE 13 OF 20 ―

Union of out(A) over all blocks A connected to the input of B

gen(B) ⋃ (in(B) – kill(B))

out(ENTRY) = Φ

out(B1) out(⋃ B2) out(⋃ B4) = Φ

out(B2) out(⋃ B3) = Φ

out(B3) = Φ

gen(B1) ⋃ (in(B1) – kill(B1)) = { D1, D2, D3, D4, D5 }

gen(B2) ⋃ (in(B2) – kill(B2)) = { D6, D7 }

gen(B3) ⋃ (in(B3) – kill(B3)) = { D8, D9 }

gen(B4) ⋃ (in(B4) – kill(B4)) = { D10, D11 }

Iteration 2

 in(B1) = out(ENTRY) = Φ

 in(B2) = out(B1) out(⋃ B2) out(⋃ B4) = { D1, D2, D3, D4, D5, D6, D7, D10, D11 }
 in(B3) = out(B2) out(⋃ B3) = { D6, D7, D8, D9 }
 in(B4) = out(B3) = { D8, D9 }
 out(B1) = gen(B1) ⋃ (in(B1) – kill(B1)) = { D1, D2, D3, D4, D5 }
 out(B2) = gen(B2) ⋃ (in(B2) – kill(B2)) = { D1, D4, D5, D6, D7, D10, D11 }
 out(B3) = gen(B3) ⋃ (in(B3) – kill(B3)) = { D6, D7, D8, D9 }
 out(B4) = gen(B4) ⋃ (in(B4) – kill(B4)) = { D8, D9, D10, D11 }

Continue the iterations on this page.

Write below the reason why the iterations stop.

Iteration 4 does not encounter a change in out(B) for any basic block B, so we have reached a fixed point (that is, running the iterations
further will change neither in(B) nor out(B) for any basic block B). So the iterations stop at this point.

― PAGE 14 OF 20 ―

Iteration 3

 in(B1) = out(ENTRY) = Φ

 in(B2) = out(B1) out(⋃ B2) out(⋃ B4) = { D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11 }
 in(B3) = out(B2) out(⋃ B3) = { D1, D4, D5, D6, D7, D8, D9, D10, D11 }
 in(B4) = out(B3) = { D6, D7, D8, D9 }
 out(B1) = gen(B1) ⋃ (in(B1) – kill(B1)) = { D1, D2, D3, D4, D5 }
 out(B2) = gen(B2) ⋃ (in(B2) – kill(B2)) = { D1, D4, D5, D6, D7, D8, D9, D10, D11 }
 out(B3) = gen(B3) ⋃ (in(B3) – kill(B3)) = { D1, D6, D7, D8, D9, D10, D11 }
 out(B4) = gen(B4) ⋃ (in(B4) – kill(B4)) = { D6, D7, D8, D9, D10, D11 }

Iteration 4

 in(B1) = out(ENTRY) = Φ

 in(B2) = out(B1) out(⋃ B2) out(⋃ B4) = { D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11 }
 in(B3) = out(B2) out(⋃ B3) = { D1, D4, D5, D6, D7, D8, D9, D10, D11 }
 in(B4) = out(B3) = { D1, D6, D7, D8, D9, D10, D11 }
 out(B1) = gen(B1) ⋃ (in(B1) – kill(B1)) = { D1, D2, D3, D4, D5 }
 out(B2) = gen(B2) ⋃ (in(B2) – kill(B2)) = { D1, D4, D5, D6, D7, D8, D9, D10, D11 }
 out(B3) = gen(B3) ⋃ (in(B3) – kill(B3)) = { D1, D6, D7, D8, D9, D10, D11 }
 out(B4) = gen(B4) ⋃ (in(B4) – kill(B4)) = { D6, D7, D8, D9, D10, D11 }

Rough Work

― PAGE 15 OF 20 ―

Rough Work

― PAGE 16 OF 20 ―

Rough Work

― PAGE 17 OF 20 ―

Rough Work

― PAGE 18 OF 20 ―

Rough Work

― PAGE 19 OF 20 ―

Rough Work

― PAGE 20 OF 20 ―

