CS39003 Compilers Laboratory
Autumn 2025
Assignment 8

Date of posting: 03-Nov-2025

Advanced 3-Address Code Generation

This assignment builds upon LA7. Here, you add conditions (Boolean) and if, if-else, and while statements. You are required to do
backpatching for generating 3-address instructions in one pass (no need for fall-through optimization). Moreover, your printing of
the three-address instructions should show the basic blocks (by single blank lines between consecutive blocks). The modified
grammar is given below. The new productions added are highlighted.

PROG —  DECLIST STMTLIST
DECLIST —  DECLIST DECL | DECL
DECL —  BASIC VARLIST ; | structid { DECLIST} ; | structid { DECLIST} VARLIST ; | structid VARLIST ;
BASIC — int | long | longint | float | double
VARLIST — VARLIST , VAR | VAR
VAR — idDIM
DIM —  [num]DIM | ¢
STMTLIST —  STMTLIST STMT | ¢
STMT — ASGN |
if (BOOL) { STMTLIST} |
if (BOOL) { STMTLIST } else { STMTLIST } |
while (BOOL) { STMTLIST }
ASGN — ITEM = EXPR ;
EXPR — EXPR + TERM | EXPR - TERM | TERM
TERM — TERM * FACTOR | TERM / FACTOR | TERM % FACTOR | FACTOR
FACTOR — intconst | fltconst | ITEM | ( EXPR )
ITEM —  SMPLITEM | ITEM . SMPLITEM
SMPLITEM — id | AREF
AREF — AREF [ EXPR ] | id [ EXPR ]
BOOL — BOOL || BOOL | BOOL && BOOL | !BOOL | (BOOL) | EXPR RELOP EXPR
RELOP — = |l=] <] <=]|]>] >

In order to avoid the dangling-else problem, we mandate the use of braces { ... } in if, if-else, and while blocks (even if the block
contains a single or no statement). (As an example, Perl enforces this restriction. Perl, however, supports brace-less single-
statement blocks as STMT if (BOOL ) ;)

We allow comparison of numeric operands only. If the two numbers being compared are of different numeric types, then suitable
type coercion(s) is/are to be carried out using the widening conventions of LA7.

Modify your code of LA7 in order to incorporate the new additions to the grammar.

The lex file

The new keywords are if, else, and while. Moreover, lex should now recognize Boolean operators (||, &&, and !) and comparison
operators (==, =, <, <=, > and >=).

The yacc file

This file needs substantial changes. In LA7, the 3-address instructions are printed to the terminal as soon as they are generated.
Now, we use backpatching. So target-less goto statements cannot be immediately printed, because the jump targets are often
available (well) after the generation of the goto statements and are inserted in appropriate instructions using backpatching. This
creates a problem because printing cannot go back to earlier lines to complete them.



A compiler usually stores the 3-address instructions in a table of quads or triples, so backpatching can go to the stored instructions
generated earlier, and complete them by adding the jump targets left unspecified at the time of the generation of these instructions.
Here, we will not go for using quads or triples. Instead we will store the 3-address instructions in strings (one instruction in one
string; instruction numbers starting from 0). In a conditional or unconditional jump statement, the jump target is the last element
in that instruction. So at the time of backpatching, an earlier incomplete string can be furnished with the additional information by
appending the jump target at the end. Use an array of strings (or a two-dimensional character array) for storing all the 3-address
instructions. After the entire input is parsed, all these stored instructions are printed in the same sequence as they are generated.

This is the first change you need to make in your (yacc) code for LA7. Maintain a global array of instructions, and a global count
(of instructions generated so far). Replace your print-to-terminal calls by appropriate string-library calls (like sprintf, strcat, and
SO on).

Another global array is needed for storing the leaders of the blocks (you need to separate consecutive blocks by blank lines).
Recall that the first instruction is always a leader. Other leaders are determined by the goto statements. The leader array may be
implemented as a list, or as an array of 0’s and 1’s (1 means leader, 0 means not leader) indexed by instruction numbers. As soon
as a jump target is generated (like during explicit goto statements or during backpatching), this array should be updated.

Your next task is to implement the productions for conditional statements and loops, and for Boolean expressions. Use the
semantic actions as explained in Section 6.7 of the Dragon Book. You do not have to implement the fall-through optimization
technique for minimizing the number of goto statements. Each STMT or STMTLIST now has a synthesized attribute called
nextlist, whereas each BOOL has two synthesized attributes truelist and falselist. Define lists of instructions appropriately
(like singly linked lists). You need to use C constructs only, because yacc will use these types as the parse-stack types for the
above non-terminals. Use the marker non-terminals M and N as explained in the book. The next instruction number is available
from the global count of instructions. Also implement the functions makelist(), merge(), and backpatch() (Section 6.7.1 of the
Dragon Book).

Your main() function will print all the stored instructions after yyparse() returns. Print a blank line before each leader (so blocks
are now visibly separated). Also print an empty instruction at the end (this may be a jump target).

What to submit

Submit an archive (tar/tgz/zip) consisting of the following files: (i) the lex file advcodegen.l, (ii) the yacc file advcodegen.y, (iii)
any other source/header file(s) that you write, and (iv) a makefile with compile, run, and clean targets.

Sample Input

long a, b;

float c;

long Catalan[50];
int 1, j, n;

struct matrix {

int row, col;
double A[100][100];
oM

a 10;
b =a;
c=a+b;

if (c>a){a=a+5 b=>b+5;}
if (c > -100 && c < 100 || a !'=b) { a=a+ 5 b=b+5; }else{a=a-5 b=>b-5;1}
while (c > -100 & c < 100 || a '=b & a !=c) {a=a+5 b=b-5 c=a-b;}

n = 25;
Catalan[0] = 1;

1=1;
while (i<=n) {
Catalan[i] = 0;

j=0;
while (j < 1) { Catalan[i] = Catalan[i] + Catalan[j] * Catalan[i-j-1]; j =3 + 1; }
i=1+1;

}

M.row = 10; M.col = 20; 1 = 0;
while (1 < M.row) {
j=0;
while (j < M.col) {
if (1 ==73) {
M.ALI[5] = 05
} else {
if (1> J && 1<j+3) {
M.ATUI[3] = 1 - 35
} else {
if (1<) && 1>3-3) { M.A[L][J] =3 - 1; } else { M.A[L][]] = -1; }



Output on Sample Input

Present your output in a format similar to what is given below.

+++ ALl declarations read

+++ 8 types

Type
Type
Type
Type
Type
Type
Type
Type

a
b

«
Catalan
i

J
n
M

~NO U R WNR O

Symbol table 0 [main]
0

Total width = 80440

int
long
float
double

array(50,long)
struct matrix [st = 1]

array(100,double)
array(100,array(100,double))

8 - 15

16 - 19

20 - 419
420 - 423
424 - 427
428 - 431
432 - 80439

Symbol table 1 [struct matrix]

row
col
A

Total width = 80008

[N
@OV NAUTEWN RO

e
WN =

14

15
16
17
18

20
21
22

23
24
25

26

27
28
29

30

31
32
33

34
35

37
38
39
40
41
42
43

44
45
46
a7
48
49
50
51

52
53
54
55
56
57
58

59

lng
ng
ng
ng
lng
lng
ng
flt
flt
flt
ng
dbl
dbl

ng
ng
ng
lng
lng
ng
lng
lng

[flt]
[flt]

[flt]
[flt]

[lng]
[tng]

lng
lng
ng
lng
lng
ng
ng
ng

ng
lng
lng
ng
ng
ng
lng
lng

[flt]
[flt]

[flt]
[flt]

t1 =
MEM(0O
t2 =
MEM(8
t3 =
t4
t5
t6 =
MEM(1
t7 =
t8 =
t9 =
t1e =

if t9 > t10 goto 15

goto

ti1 =
t12 =
t13 =
MEM(0
t14 =
t15 =
t16 =
MEM(8

t17 =

t18 = (int2flt)-100
if t17 > t18 goto 27

goto 31

t19 = MEM(16,4)

t20 = (int2flt)100

if t19 < t20 goto 35

goto 31

t21 = MEM(0,8)

t22 = MEM(8,8)

if t21 != t22 goto 35

goto 44

t23 = MEM(0,8)

t24 = (int2lng)5

t25 = t23 + t24

MEM(0,8) = t25

t26 = MEM(8,8)

t27 = (int2lng)5

t28 = t26 + t27

MEM(8,8) = t28

goto 52

t29 = MEM(0,8)

t30 = (int2lng)5

t31 = t29 - t30

MEM(0,8) = t31

£32 = MEM(8,8)

t33 = (int2lng)5

t34 = t32 - t33

MEM(8,8) = t34
MEM(16,4)

t35 =

t36 = (int2flt)-100
if t35 > t36 goto 56

goto

t37 =
t38 =

if t37 < t38 goto 70

goto

4-7
8 - 80007

(int2lng)10
,8) = t1
MEM(0,8)
,8) = t2
MEM(0,8)
MEM(8,8)
t3 + t4
(lng2flt)ts
6,4) = t6
MEM(16,4)
MEM(0,8)
(flt2dbl)t7
(lng2db1)t8

23

MEM(0,8)
(int21ng)5
t11 + t12
,8) = t13
MEM(8,8)
(int2lng)5s
t14 + ti15
,8) = t16

MEM(16,4)

60

MEM(16,4)
(int2f1t)100

60

type
type
type
type
type
type
type
type

type
type
type

OO ANR

~o o

long

long

float
array(50,long)
int

int
int
struct matrix [st = 1]

int
int
array(100,array(100,double))



60
62
63

64
65
66
67
68

69

93

94
95
96

98
99

100
101
102

103

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128

129
130
131
132

133
134
135
136
137

138
139
140
141

142
143
144
145
146
147
148
149
150
151

152

[lng]
[tng]

lng
flt
dbl
dbl

lng
ng
lng
lng
ng
ng
lng
lng
lng
ng
lng
flt
flt

int
int
int
lng
lng
int

[int]
[int]

[int]
[int]
[int]
[ng]
[lng]
[int]

[int]
[int]

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
lng
ng
lng
lng
ng
ng
int
int
int

int
int
int

int
int
int
int
int
int
int
int

[int]

[int]
[int]
[int]

[int]
[int]

t39 = MEM(0,8)
t40 = MEM(8,8)
if t39 != t40 goto 64

goto 84

t41 = MEM(0,8)

t42 = MEM(16,4)
t43 = (lng2dbl)t41

t44 = (flt2dbl)t42
if t43 != t44 goto 70

goto 84

t45 = MEM(0,8)
t46 = (int2lng)5
t47 = t45 + t46
MEM(0,8) = t47
t48 = MEM(8,8)
t49 = (int2lng)5
t50 = t48 - t49
MEM(8,8) = t50
t51 = MEM(0,8)
t52 = MEM(8,8)
t53 = t51 - t52

t54 = (lng2flt)t53
MEM(16,4) = t54

goto 52
MEM(428,4) = 25
t55 =8 * 0

t56 = 20 + t55

t57 = (int2lng)1
MEM(t56,8) = t57
MEM(420,4) = 1

t58 = MEM(420,4)
t59 = MEM(428,4)
if t58 <= t59 goto 94

goto 133

t60 = MEM(420,4)
t61 = 8 * t60
t62 = 20 + t61
t63 = (int2lng)0
MEM(t62,8) = t63
MEM(424,4) = 0

t64 = MEM(424,4)

t65 = MEM(420,4)
if t64 < t65 goto 104
goto 129

t66 = MEM(420,4)
t67 = 8 * t66
t68 = 20 + t67
t69 = MEM(420,4)
t70 = 8 * t69
t71 = 20 + t70
t72 = MEM(424,4)
t73 = 8 * t72
t74 = 20 + t73
t75 = MEM(420,4)
t76 = MEM(424,4)
t77 = t75 - t76
t78 = t77 - 1
t79 = 8 * t78
t80 = 20 + t79
t81 = MEM(t74,8)
t82 = MEM(t80,8)
t83 = t81 * t82
t84 = MEM(t71,8)
t85 = t84 + t83

MEM(t68,8) = t85
t86 = MEM(424,4)
t87 = t86 + 1
MEM(424,4) = t87
goto 100

t88 = MEM(420,4)
t89 = t88 + 1
MEM(420,4) = t89
goto 90

t90 = 432 + 0
MEM(t90,4) = 10
t91 = 432 + 4

MEM(t91,4) = 20
MEM(420,4) = 0

t92 = MEM(420,4)
t93 =432 + 0

t94 = MEM(t93,4)

if t92 < t94 goto 143

goto 224

MEM(424,4) = 0

t95 = MEM(424,4)

196 = 432 + 4

t97 = MEM(t96,4)

if t95 < t97 goto 149
goto 220

t98 = MEM(420,4)

t99 = MEM(424,4)

if t98 == t99 goto 153

goto 163



153
154
155
156
157
158
159
160
161
162

163
164
165

166

167
168
169
170

171

172
173
174
175
176
177
178
179
180
181
182
183
184

185
186
187

188

189
190
191
192

193

194
195
196
197
198
199
200
201
202
203
204
205
206

207
208
209
210
211
212
213
214
215

216
217
218
219

220
221
222
223

224:

[int]
[int]
[int]
[int]
[int]
[int]
[int]
[dbl]
[dbl]

[int]
[int]

int
int
int

int
int
int
int
int
int
int
int
int
int
dbl
dbl

[int]
[int]

int
int
int

int
int
int
int
int
int
int
int
int
int
dbl
dbl

int
int
int
int
int
int
int
dbl
dbl

int
int
int

int
int
int

t100 = MEM(420,4)
t101 = 800 * t100
t102 = 8 + t101
t103 = MEM(424,4)
t104 = 8 * t103
t105 = t102 + t104
t106 = 432 + t105

t107 = (int2dbl)e
MEM(t106,8) = t107
goto 216

t108 = MEM(420,4)
t109 = MEM(424,4)
if t108 > t109 goto 167

goto 185

t110 = MEM(420,4)

t111 = MEM(424,4)

t112 = t111 + 3

if t110 < t112 goto 172

goto 185

t113 = MEM(420,4)
t114 = 800 * t113
t115 = 8 + t114
t116 = MEM(424,4)
t117 = 8 * ti16
t118 = t115 + t117
t119 = 432 + t118
t120 = MEM(420,4)
t121 = MEM(424,4)
t122 = t120 - ti121
t123 = (int2dbl)t122

MEM(t119,8) = t123
goto 216

t124 = MEM(420,4)
t125 = MEM(424,4)
if t124 < t125 goto 189

goto 207

t126 = MEM(420,4)

t127 = MEM(424,4)

t128 = t127 - 3

if t126 > t128 goto 194

goto 207

t129 = MEM(420,4)
t130 = 800 * t129
t131 = 8 + t130
t132 = MEM(424,4)
t133 = 8 * t132
t134 = t131 + t133
t135 = 432 + t134
t136 = MEM(424,4)
t137 = MEM(420,4)
t138 = t136 - t137
t139 = (int2dbl)t138

MEM(t135,8) = t139
goto 216

t140 = MEM(420,4)
t141 = 800 * t140
t142 = 8 + t141
t143 = MEM(424,4)
t144 = 8 * t143
t145 = t142 + t144
t146 = 432 + t145
t147 = (int2dbl)-1

MEM(t146,8) = t147

t148 = MEM(424,4)
t149 = t148 + 1
MEM(424,4) = t149
goto 144

t150 = MEM(420,4)
t151 = t150 + 1
MEM(420,4) = t151
goto 138



