
CS39003 Compilers Laboratory
Autumn 2025
Assignment 5

Date of posting: 06-Oct-2025

Yacc programming with inherited attributes

This assignment deals with C-type declaration of variables, arrays, and pointers. We use the following grammar for this purpose.
The start symbol is PROG which is used to generate a (non-empty) sequence of declarations (DECLIST). Each declaration,
generated by the non-terminal DECL, starts with a basic type (like int or double) followed by a non-empty comma-separated list of
variables and then by a semicolon. Each variable in a list of variables contains one ID preceded optionally by one or more stars
(indicating pointers) and followed optionally by one or more dimensions within square brackets (indicating arrays). The terminal
symbols below are in color red.

PROG → DECLIST
DECLIST → DECLIST DECL | DECL
DECL → BASIC VARLIST ;
BASIC → void | char | unsigned char | short | short int | unsigned short | unsigned short int |

 int | unsigned | unsigned int | long | long int | unsigned long | unsigned long int | float | double
VARLIST → VARLIST , VAR | VAR
VAR → * VAR | id DIM
DIM → [num] DIM | ε

Here is an example of a set of declarations generated by PROG (or DECLIST).

char roll[10], name[101];
unsigned short int yob;
float CGPA;
char gender;

long int a, *p, **q, ***r, A[5], B[6][7], **C[2][3][4];

double points[100][3], *P;

void *vptr;

unsigned char letters[26];

This assignment deals with the following tasks.

● Write a lex file ctype.l to identify the tokens (identifiers, numbers, and punctuation symbols).

● Write a yacc file ctype.y to do the following tasks associated with parsing.

○ Maintain a global type table TT for storing all basic types and other types (arrays and pointers) that the user defines
in the input file.

○ Maintain a global symbol table ST to store all the names (and associated information) about the variables declared in
the program.

● The yacc grammar should only call the functions for handling the type table TT and the symbol table ST. These functions
may be defined in the same yacc file, or in another separate source file. Also write functions to print the contents of the
type table and the symbol table.

● A main function that first sets yyin (if needed), then calls yyparse() to process all the declarations in the input file, and
finally prints the contents of the type table and the symbol table by calling appropriate functions.

Lex file

As usual, the lex file (yylex() to be more precise) will supply the stream of input tokens to yyparse(). For each basic data type,
use a single token. For example, both unsigned short and unsigned short int should return the same token USRT. You may use the
following eleven token names for the basic data types (to be declared in the yacc file): VOID, UCHR, CHR, SRT, USRT, LNG, ULNG,
UINT, INT, FLT, and DBL. In general, white spaces should be ignored by lex. But special care needs to be taken here, because some
basic data types contain white spaces. In the example above, there must be any non-empty sequence of white spaces between
unsigned and short, and also between short and int. In this assignment, treat the new-line character as a white space. In earlier

assignments, the new-line character marks the end of an assignment statement. Now, semicolon is used as the explicit statement
delimiter, so the new-line character no longer needs to play this role.

This assignment does not deal with any keywords other than the basic data types mentioned above.

Identifiers are generated by the token id. We follow the C-style naming convention for variables. Positive integers are generated
by the token num for use as array dimensions.

The punctuation symbols to be returned are: * ; , []

Type table

The type table TT is at the heart of type checking. You need to build a careful data structure to store all the types appearing in the
input program. Use an array of structures to implement TT. The components of each element of TT are explained shortly.

You start by populating TT by the eleven basic types. New types are generated by array and pointer constructs. These types should
be added to TT as soon as they are generated. These new types are usually defined recursively. For example, consider the
following declarations.

long int x, A[10], B[5][10], *p, **q, **C[2][3][4];

The types of the four variables introduced by this declaration are as follows.

x long
A array(10,long)
B array(5,array(10,long))
p pointer(long)
q pointer(pointer(long))
C array(2,array(3,array(4,pointer(pointer(long)))))

These types must be stored in the type table TT. This table must never contain duplicate types. TT is already loaded with the basic
types. Assume that the remaining types are currently not residing in TT.

Since x is of basic type, no new type needs to be inserted to TT. For A, the new type to be inserted in TT will be array(10,long).
The entry for this type will have category ARRAY, dimension 10, and element type long (reference to the entry of TT storing this
basic type). B uses the same data type for A in order to represent each row, so the type array(10,long) must not be inserted again
in TT. However, the new type to be added to TT will be array(5,array(10,long)). This is again of category ARRAY, but of
dimension 5, and the element type is a reference to (that is, index in TT of) the type array(10,long). Note that two array types
are the same if and only if they have the same dimension and the same reference type. That is, array(10,long) and
array(20,long) are of different types. Likewise, array(10,long), array(10,double), array(2,array(5,long)) and
array(10,array(8,char)) are all of different types.

The new type to be inserted for p is an entry in TT of category POINTER, and with a reference to the basic type long. Since q is a
pointer to this pointer type, only a single entry is to the added to TT. This entry is of category POINTER, and with a reference to the
type pointer(long) that is already inserted in TT.

The declaration for C uses many new types. The element type of this three-dimensional array is pointer(pointer(long)). This
type is already introduced in TT by the declaration of q. For a complete definition of the type of C, the following new types are to
be added to TT.

array(4,pointer(pointer(long)))
array(3,array(4,pointer(pointer(long))))
array(2,array(3,array(4,pointer(pointer(long)))))

All these entries are of category ARRAY, but have different dimensions and different reference types.

Alongside the type, each entry in TT should store the width (memory requirement or size) of (each variable of) that type. For a
basic type, this width can be obtained using the sizeof operator of C. For example, width(CHR) = sizeof(char) = 1,
width(INT) = sizeof(int) = 4, and width(DBL) = sizeof(double) = 8. We assume that all pointers are of the same size
that can be obtained as sizeof(void *). The width of the array ARRAY(DIM,element_type) is DIM times the width of
element_type. Since element_type is a reference to an entry in TT, the width of that entry is to be used for calculating the width
of the ARRAY entry in TT.

We assume that all variables are 4-byte aligned, that is, start at locations in the data segment, that are multiples of 4. As an
example, consider the first four declarations of the example on the first page. Assume that no declarations appear before them. We
start placing the variables at offset zero in the data segment.

char roll[10], name[101];
unsigned short int yob;
float CGPA;
char gender;

We use a 9-letter roll number as in IITKGP. If you need to store this as a string, you need to have a trailing null character, so the
array roll will be of size 10, and occupies memory locations 0 – 9 inside the data segment. The next array name (capable of
storing a name of maximum length 100, as a string) cannot start from memory location 10 immediately after the end of the array
roll. It will start at the next multiple of 4, that is, from offset 12 inside the data segment, and will occupy memory locations 12 –
112. The third entry is an unsigned short int requiring 2 bytes. It will occupy memory locations 116 – 117 (not 113 – 114
immediately after name). Likewise, CGPA will occupy locations 120 – 123, and gender 124 – 124. The next variable (a in the
example on the first page) will start from memory location 128, and so on. The total data segment size will be rounded up to the
next multiple of 4.

We now tabulate the fields of each entry in TT. Each blank entry in the following table means field is not used.

Category Dimension Reference Width

 VOID 0
 UCHR 1
 …
 DBL 8
 ARRAY Number of elements Index of the element type To be calculated
 POINTER Index of the element type Pointer size (usually 8)

Design your own implementation (array of records) of the type table TT. Use linear search in that array. There is no need to
go for an efficient data structure to be designed by you or available in any ready-made library.

Symbol table

In earlier assignments, we have used a symbol table consisting of (name, value) pairs. From this assignment onward, each entry
in each symbol table will be a triple (name, type, offset). Here, name is the user-given name of the variable, type is a reference
to (index in) the entry in the type table TT, storing the type of that variable, and offset is the starting location (a multiple of 4) of
the memory allocated to the variable (the offset in the data segment).

Design your own implementation for the symbol table. Again you do not have to go for any efficient data structures. Instead
use an array of (name, type, offset) triples. Make linear search (for a name) in the symbol table.

Also write a function to insert a variable in the symbol table. This function would require two arguments: the name of the
variable, and the type of the variable (an index in TT). The offset of that variable to be stored in the triple (name, type, offset) of
the symbol table is to be computed by the insertion function. A global variable is used to store the current width (always
maintained as a multiple of 4) of the symbol table. Disallow duplicate names of two variables in the symbol table.

Yacc file

Implement the grammar given at the beginning of this assignment (and no other grammar). You only need to insert appropriate
marker non-terminals in the appropriate places of the productions.

Width and offset calculations can be carried out using the global type table TT and the global width of the symbol table. Use the
token num for calculating the width of an array. Store that width in TT against that array type. There is no need to use synthesized
attributes in these calculations.

There is however a need to use inherited attributes that demand marker non-terminals. Each DECL begins with a basic data type.
This should move as it is, to each outermost VAR in the rest of the declaration. Whenever a VAR encounters the production
VAR → * VAR, the type of the child VAR changes to pointer(type of the parent VAR). Eventually, VAR vanishes by the production
VAR → id DIM. The type of VAR then passes down as it is, to the subtree under DIM. Eventually, DIM → ε is used. Subsequently, the
type of DIM undergoes a sequence of array constructions in a synthesized manner. At the end of these synthesized computations, id
gets its type. This type is stored in TT (if not present already), and id is added to the symbol table with a reference to this type. The
offset of id is obtained from the current width of the symbol table. The width of the symbol table is incremented by the width of
(the type of) id, and if needed, rounded up to the nearest multiple of 4 for the placement of the next variable.

Notice that each use of VAR → * VAR introduces a pointer type. The type table TT is searched for that pointer type, and if not
found, that type is inserted to TT. Moreover, each reduction using DIM → [num] DIM uses an array construction. This array type, if
not already present in TT, should be inserted there.

Use suitable marker non-terminals for the above parent-to-child transfers of types (indices in TT).

Printing the tables

After all declarations are read, print the type table TT, and the details of the variables stored in the symbol table ST. Use the format
as explained in the Sample Output section below. Write suitable functions for doing these tasks.

What to submit

Write a makefile with compile, run, and clean targets. Pack you lex file, your yacc file, the makefile, and any other source or
header file that you use (not lex.yy.c, y.tab.h or y.tab.c) in a single zip/tar/tgz archive. Submit that archive only.

Sample Output

For the declarations given on the first page (stored in the file decl.c), the output follows.

$ make run
yacc -d ctype.y
lex ctype.l
gcc y.tab.c lex.yy.c
./a.out decl.c
+++ All declarations read

+++ 27 types
 Type 0: 0 void
 Type 1: 1 unsigned char
 Type 2: 1 char
 Type 3: 2 unsigned short
 Type 4: 2 short
 Type 5: 8 unsigned long
 Type 6: 8 long
 Type 7: 4 unsigned int
 Type 8: 4 int
 Type 9: 4 float
 Type 10: 8 double
 Type 11: 10 array(10,char)
 Type 12: 101 array(101,char)
 Type 13: 8 pointer(long)
 Type 14: 8 pointer(pointer(long))
 Type 15: 8 pointer(pointer(pointer(long)))
 Type 16: 40 array(5,long)
 Type 17: 56 array(7,long)
 Type 18: 336 array(6,array(7,long))
 Type 19: 32 array(4,pointer(pointer(long)))
 Type 20: 96 array(3,array(4,pointer(pointer(long))))
 Type 21: 192 array(2,array(3,array(4,pointer(pointer(long)))))
 Type 22: 24 array(3,double)
 Type 23: 2400 array(100,array(3,double))
 Type 24: 8 pointer(double)
 Type 25: 8 pointer(void)
 Type 26: 26 array(26,unsigned char)

+++ Symbol table
 roll 0 - 9 type = 11 = array(10,char)
 name 12 - 112 type = 12 = array(101,char)
 yob 116 - 117 type = 3 = unsigned short
 CGPA 120 - 123 type = 9 = float
 gender 124 - 124 type = 2 = char
 a 128 - 135 type = 6 = long
 p 136 - 143 type = 13 = pointer(long)
 q 144 - 151 type = 14 = pointer(pointer(long))
 r 152 - 159 type = 15 = pointer(pointer(pointer(long)))
 A 160 - 199 type = 16 = array(5,long)
 B 200 - 535 type = 18 = array(6,array(7,long))
 C 536 - 727 type = 21 = array(2,array(3,array(4,pointer(pointer(long)))))
 points 728 - 3127 type = 23 = array(100,array(3,double))
 P 3128 - 3135 type = 24 = pointer(double)
 vptr 3136 - 3143 type = 25 = pointer(void)
 letters 3144 - 3169 type = 26 = array(26,unsigned char)
 Total width = 3172
$

