
CS60082/CS60094 Computational Number Theory, Spring 2010–11

Mid-Semester Test

Maximum marks: 30 Date: February 2011 Duration:2 hours

Roll no: Name:

[ Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

1. (a) Let n = p2q with p, q distinct odd primes,p 6 | (q − 1) and q 6 | (p − 1). Prove that factoringn is
polynomial-time equivalent to computingφ(n). (3)

Solution We haven = p2q andφ(n) = p(p − 1)(q − 1). If p, q are known, we can computeφ(n) in polynomial time.
Conversely, ifφ(n) is known, we computep = gcd(n, φ(n)) and obtainq = n/p2.

(b) Let n = p2q with p, q odd primes satisfyingq = 2p + 1. Argue that one can factorn in polynomial
time. (3)

Solution Substitutingq = 2p + 1 givesp2(2p + 1) − n = 0, a cubic equation in the variablep. One can use a standard
numerical method (like the Newton-Raphson method) to solvefor p. One may use integer calculations only. If
one chooses to use floating-point calculations instead, oneshould work with a precision ofΘ(log n) bits.
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2. Let a, b, c be non-zero integers, andd = gcd(a, b).

(a) Prove that the equation

ax + by = c (∗)

is solvable ininteger values of x, y if and only if d | c. (3)

Solution [If] By B ézout’s theorem,au + bv = d for some integersu, v. Let c = ld. But thena(lu) + b(lv) = c, that is,
Eqn (∗) has a solution(lu, lv).

[Only if] If (s, t) is a solution of Eqn (∗), thenas + bt = c. Now, d divides botha andb, that is,as + bt too,
that is,d | c.

(b) Suppose thatd | c, and(s, t) is a solution of Eqn (∗). Prove that all the solutions of Eqn (∗) can be given
as(s + k(b/d), t − k(a/d)) for all k ∈ Z. Describe how one solution(s, t) can be efficiently computed. (3)

Solution If (s′, t′) is another solution of Eqn (∗), we haveas+ bt = c = as′ + bt′, that is,(a/d)(s′− s) = (b/d)(t− t′).
But gcd(a/d, b/d) = 1, so(b/d) | (s′ − s), that is,s′ − s = k(b/d) for somek ∈ Z. But thent− t′ = k(a/d).
Therefore, it suffices to determine one solution(s, t) of Eqn (∗). By an extended gcd algorithm, computeu, v
such thatau + bv = d. Computel = c/d = c/ gcd(a.b). Takes = lu andt = lv.

(c) Compute all the (integer) solutions of the equation21x + 15y = 60. (3)

Solution We havegcd(21, 15) = 3 = 21 × 3 + 15 × (−4), so60 = 20 × 3 = 21 × 60 + 15 × (−80), that is, all the
solutions of21x + 15y = 60 are(60 + k(15/3),−80 − k(21/3)) = (60 + 5k,−80 − 7k) for all k ∈ Z.
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3. Let p be an odd prime,a ∈ Z
∗

p
, ande ∈ N. Prove that the multiplicative order of1 + ap modulope is pe−1.

(Remark: This result can be used to obtain primitive roots modulope.) (6)

Solution The result being obvious fore = 1, takee > 2. Let me first prove the following important result.

Lemma: For everye > 2, we have(1 + ap)P e−2

≡ 1 + ape−1 (mod pe).

Proof We proceed by induction one. Fore = 2, both sides of the congruence are equal to the integer1 + ap.
So assume that the given congruence holds for somee > 2. We investigate the value of(1 + ap)pe−1

modulo
pe+1. By the induction hypothesis,(1 + ap)pe−2

= 1 + ape−1 + upe for some integeru. Raising both sides of
this equality to thep-th power gives

(1 + ap)pe−1

= (1 + ape−1 + upe)p

= 1 +

(

p

1

)

(ape−1 + upe) +

(

p

2

)

(ape−1 + upe)2 + · · · +

(

p

p − 1

)

(ape−1 + upe)p−1 + (ape−1 + upe)p

= 1 + ape + pe+1 × v

for some integerv (sincep is prime so thatp|
(

p
k

)

for 1 6 k 6 p − 1, and since the last term in the binomial
expansion is divisible bypp(e−1), in which the exponentp(e − 1) > e + 1 for all p > 3 ande > 2). This
completes the proof of the lemma.

Let us now derive the order of1 + ap modulo pe. Using the lemma fore + 1 indicates(1 + ap)pe−1

≡

1 + ape (mod pe+1) and, in particular,(1 + ap)pe−1

≡ 1 (mod pe). Therefore,ordpe(1 + ap) | pe−1. The
lemma also implies that(1 + ap)pe−2

6≡ 1 (mod pe) (for a is coprime top), that is,ordpe(1 + ap)6 |pe−2. We,
therefore, haveordpe(1 + ap) = pe−1.
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4. (a) Which of the polynomialsx2 ± 7 is irreducible modulo19? Justify. (3)

Solution Since
(

7
19

)

= (−1)(7−1)(19−1)/4
(

19
7

)

= −
(

19
7

)

= −
(

5
7

)

= −(−1)(5−1)(7−1)/4
(

7
5

)

= −
(

7
5

)

= −
(

2
5

)

=
−(−1) = +1, we conclude that7 is a quadratic residue modulo19. But 19 ≡ 3 (mod 4), so−7 is a quadratic
non-residue modulo19. Thus,x2 − 7 is reducible modulo19, whereasx2 + 7 is irreducible modulo19.

(b) Using the irreducible polynomialf(x) of Part (a), represent the finite fieldF361 = F192 asF19(θ),
wheref(θ) = 0. Compute(2θ + 3)11 in this representation ofF361 using the left-to-right square-and-
multiply exponentiation algorithm. Show your calculations. (6)

Solution We takef(x) = x2 + 7, that is,θ2 + 7 = 0, that is,θ2 = −7 = 12. The binary expansion of11 is (1011)2.
Therefore, the left-to-right exponentiation proceeds as follows. The variable “Product” is initialized to1.

Bit Operation Product
1 Sqr 1

Mul 2θ + 3

0 Sqr (2θ + 3)2 = 4θ2 + 12θ + 9 = 4 × 12 + 12θ + 9 = 12θ

1 Sqr (12θ)2 = 144 × θ2 = 11 × 12 = 18
Mul 18 × (2θ + 3) = 17θ + 16

1 Sqr (17θ + 16)2 = 289θ2 + 544θ + 256 = 4 × 12 + 12θ + 9 = 12θ
Mul (12θ)(2θ + 3) = 24θ2 + 36θ = 5 × 12 + 17θ = 17θ + 3

We conclude that(2θ + 3)11 = 17θ + 3.
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