CS60082/CS60094 Computational Number Theory, Spring 2010+

End-Semester Test

Maximum marks: 55 Date: April 2011 DuratioB:hours

Roll no: Name:

[ Write your answers in the question paper itself. Be brief and precisevérall questions,

1. Represenfy; = Fss asF3(0), wheref® + 20 + 1 = 0. Leta = 6% + 2.

(a) Determine whethet is a primitive element oF 5. (5)

Solution We have27 — 1 = 2 x 13. We computer? anda!® = a x a* x ab.

o = 01+ 02 +1=000°+20+1)+20>+20+1=20"+20 + 1,
ot = P 14208 40740 =0 +20° +20° +0+1

= 0P +204+1)+20°+1=2(0>4+20+1)+20+2=20+2,
o = 07 +20+1.

But thena'd = (0% 4+ 2)(20 + 2)(6% +20 + 1) = 2(0> + 2)(0 + 1)(0> — 0 + 1) = 2(6% +2)(0> + 1) =
20(6% +2) = 2(03 + 20) = —2 = 1. Sincea!? = 1, we conclude that is nota primitive element.
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(b) Determine whethet is a normal element dfo.

Solution We have

Therefore,

(2)-

The determinant of the transformation matrix2is< (1 —2) = 1 # 0 (mod 3). Therefore,« is a normal

element ofF 5.

6% 4 2

axa® = (6%42)(20% +20 + 1)

20% 4+ 20 + 6% + 0> + 0 + 2

20 4 20° + 20> + 0 + 2

20(0° +20 +1) +26° + 0> + 20 + 2

2(0° +20+1)+ 6%+ 0 =0 +0,
axa®=(6%4+2)(0*+20+1)
O@—-1)O+1)(0*—0+1)=(0+2)(0°+1)
0(0 +2) = 62 +26.

BE()

N = O
=
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2. Let s andt be bit lengths withs > ¢. Your task is to find a randontbit primep for whichp — 1 has a prime
divisor of bit lengtht.

(a) Describe arefficientalgorithm to compute such a prinpe (5)

Solution The following algorithm generates a randerbit prime p with a randome-bit prime divisorg of p — 1.

Generate a randotrbit integerq.

If ¢ is not prime, go to Step 1.

Compute the bound8; = [(2°7! —1)/¢| andB; = [(2° — 2)/q].
Generate a random integem the intervalB; < a < Bs.

Setp = aq + 1.

If pis not prime, go to Step 4.

Returnp (andgq, if needed).

No o~ wDdhRE

(b) Express the expected running time of your algorithm in terms of the bit lesgihdt. (5)

Solution The running time of the above algorithm is dominated by thenality tests in Steps 2 and 6. Let a primality
test on anl-bit integer run in timeO(1*) for some constant. By the prime number theorem, the probability
for ¢ to be prime (Step 2) i®(t), and the probability fop to be prime (Step 6) i®(s). That is, we expect to
obtain a primey after trying©(¢) random values. Moreover, we expect to obtain a prinagter tryingO(s)
multipliersa. It, therefore, follows that the expected running time @& #bove algorithm ig)(s* 1 + ¢F+1),
that is,O(s**1) (sincet < s). For the Miller-Rabin testk = 3, so this running time i©)(s*). For the AKS
test, we can také = 7.5, so the running time becomexs%-?).
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. [Pocklington primality tegt Let n be a positive odd integer whose primality is to be checked. Write
n — 1 = uv, where the complete prime factorizationwofs known, whereas is composite with no known
factors. (The case = 1 is also allowed.) Suppose also that for some integere have:” ! = 1 (mod n),
whereaszed(a("~1/7 — 1, n) = 1 for all prime divisorsg of w.

(a) Prove that every prime factgrof n satisfiep = 1 (mod «). (Hint: First, show thai | ord,(a).) (5)

Solution Sincea™”"! = 1 (mod n), we evidently haves” ! = 1 (mod p). Moreover, sincep|n, we have
ged(a"=V/a — 1 p) = 1, thatis,a®"V/9 £ 1 (mod p). It follows thatord,(a) = ut for somet | v.
But thenb = a' (mod p) has orderu modulop. Butord,(b)|¢(p) = p — 1, thatis,u|(p — 1), that is,

p =1 (mod u).

(b) Conclude that ifu > /n, thenn is prime. (5)

Solution Suppose that is composite. Take any prime divispiof n withp < /n. ByPart (@Qp > u+1 > /n + 1,
a contradiction. Therefore, must be prime.
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(c) Describe a situation when the criterion of Part (b) leads to an efficientitdgofor determining the
primality of n. (Hint: Let all prime factors ot besmall) (5)

Solution In order to convert the above observations to an efficierdrélgn, we need to clarify two issues.

(1) n — 1 can be written asv with u, v as above and withh > /n.. We can keep on making trial divisions
of n — 1 by small primes;; = 2, g2 = 3, ¢3 = 5, ... until n — 1 reduces to a value < \/n. If n — 1 is not
expressible in the above form, we terminate the procedwlaeportfailure after a suitable number of small
primes are tried.

(2) We need an elementsatisfying the two conditions” ! = 1 (mod n) andged(a"~1/9 — 1,n) = 1 for
all glu. If n is indeed prime, any primitive element modulcatisfies these conditions, and there are at least
¢(n — 1) of them. This means that a suitable random haseexpected to be available within a few iterations.

4. Consider the subexponential expression
L, (w,c) = exp [c (Inn)“(Inln n)lfw}

for constantss ande with 0 < w < 1 ande > 0. Taken ~ 2!02*, Find the values of the expressiomns*,
L,(1/2,1)andL,(1/3,2). What do these values tell about known integer-factoring algorithms? (5)

Solution We have the following approximate values:

1/4 9256

Q

n 1.158 x 1077,
L,(1/2,1) 4.424 x 10%,
L,(1/3,2) =~ 2992 ~ 1.462 x 10%".

298.48

%
%

These figures indicate that for factoring integers of bie §ix24, fully exponential methods (like Pollard’s rho
method) are very inefficient, the QSM is significantly fagtean that, and the number-field sieve method is the
fastest.

— Page50f8 —



5. In the original QSM, we sieve aroundn . Suppose we instead take = [\/2@ and.J = H? — 2n.

(a) Describe how we can modify the original QSM to work for these value& aind J. It suffices to
describe how we get a relation in the modified QSM. There is no need tdlse#uee sieving process or the
linear-algebra phase, or to recommend optimal valuedfdsieving limit) andt (size of the factor base). (5)

Solution For small values of, consider the expression
(H+c)?=H*+2cH+*=J+2n+2cH +c? =J + 2cH + ¢ (mod n).
Call
T(c) = J +2cH + 2.

SinceH ~ /2y/n, andJ < 2v/2y/n, it follows thatT(c) = O(y/n) for small values of. We choose a
factor baseB = {pi,ps,...,p:} of t small primes. If the integef’(c) factors completely oveB, that is, if
T(c) =pT'ps?---pit, we get arelation

(H +¢)® = pips? - pf* (mod n).

By varyingc in the range- M < ¢ < M, we collects relations. The parametefd and¢ are so adjusted that
one expects to get>> ¢ (like s = 2¢). The resulting x s system involving the exponents; in the collected
relations is solved to obtain a non-trivial congruence efftrmz? = y2 (mod n).

If a small primep divides someT'(c), we have(H + ¢)? = 2n (mod p), that is,2n is a quadratic residue
modulop. This implies that it suffices to include only those smalhpes in the factor base, modulo whigh
(notn) is a quadratic residue.
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(b) Explain why the modified QSM is poorer than the original QSMint: Look at the approximate
average value dff’'(c)|.) (5)

Solution SinceH and.J areQ(+/n ), andc is at most a subexponential expressiotvinn, it follows that|T'(¢)| ~ 2H|¢|
for almost all values oé. In other words, the absolute valuesTofc) are directly proportional to the value of
H. For example, the average value|dfc)| approximately equaldH x (M /2) = M H. In the original QSM,
H =~ \/n, whereas in the modified QSM{ ~ /2 \/n. This implies that the candidates tested for smoothness
in the modified method ar¢/2 times larger than those for the original QSM. For a fixed cha€M and
t, the modified method is, therefore, expected to yield a @nalimber of relations than the original method.
Consequently, slightly larger values &f and/ort are needed by the modified method to yield sufficiently many
relations, that is, the modified method is slightly more fiicé#nt than the original method.
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(c) Despite the objection in Part (b) about the modified QSM, we can exploit ittaawantage. Suppose
that we run two sieves: one arougth (the original QSM), and the other aroug@n (the modified QSM),
each on a sieving interval of length half of that for the original QSM. Jusiify this reduction in the length
of the sieving interval is acceptable. Discuss what we gain by using thesiéua. (5)

Solution Let H = [/n] (original QSM) andH’ = [v/2n | (modified QSM). LetM be the optimal sieving limit when
the original QSM runs alone. In the case of the dual QSM, webath the original QSM and the modified
QSM with a sieving limit ofAM/ /2. In the original QSM2M + 1 candidates (fo-M < ¢ < M) are tried for
smoothness. In the dual QSM, there are two sieves each hgiddl4- 1 candidates (for-M/2 < ¢ < M/2).
The total number of candidates for the dual QSM is, therefa¥é+ 2. In the original QSM2M + 1 candidates
are expected to supply the requisite number of relationsth&aual QSM, too, is expected to supply nearly
the same number of relations, provided that the candidateaa much larger in the dual QSM than in the
original QSM. Indeed, we now show that the dual QSM actuatjuces the absolute values of the candidates
by a factor larger that.

The values ofT'(¢)| for the original QSM are approximately proportionalfio whereas those for the modified
QSM are roughly proportional t&l’ ~ /2 H. In particular, the average value [ (c)| for the first sieve in
this case is nearl§H x (M/4) = M H/2 (the sieving interval iS\//2 now). Moreover, the average value of
|T(c)| for the second sieve is aboRiil’ x (M/4) ~ /2 M H/2. The average for both the sieves is, therefore,
(1 + v2)MH/4. When the original QSM runs alone, this averagédgi. Consequently, the smoothness
candidates in the dual QSM are smaller than those for thénali®SM by a factor oft/(1 + v/2) ~ 1.657.

As a result, the dual QSM is expected to supply more relatibas the original QSM. Viewed from another
angle, we can take slightly smaller values fdrand/ort in the dual QSM than necessary for the original QSM,
that is, the dual QSM is slightly more efficient than the araiQSM.

The dual QSM does not consider the larger half of THe) values (corresponding td//2 < |c¢| < M) for
smoothness tests. It instead runs another sieve. Althdwgbrhoothness candidates in the second sieve are
abouty/2 times larger than the candidates in the original sieve etigan overall reduction in the absolute
values ofT'(c) (averaged over the two sieves). This idea was first (apggfgarbposed in my PhD thesis (in
connection with the linear sieve method for computing disefogarithms in prime fields—the LSM is a direct
adaptation of the QSM).
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