
CS60082/CS60094 Computational Number Theory, Spring 2010–11

End-Semester Test

Maximum marks: 55 Date: April 2011 Duration:3 hours

Roll no: Name:

[ Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

1. RepresentF27 = F33 asF3(θ), whereθ3 + 2θ + 1 = 0. Let α = θ2 + 2.

(a) Determine whetherα is a primitive element ofF27. (5)

Solution We have27 − 1 = 2 × 13. We computeα2 andα13 = α × α4 × α8.

α2 = θ4 + θ2 + 1 = θ(θ3 + 2θ + 1) + 2θ2 + 2θ + 1 = 2θ2 + 2θ + 1,

α4 = θ4 + θ2 + 1 + 2θ3 + θ2 + θ = θ4 + 2θ3 + 2θ2 + θ + 1

= θ(θ3 + 2θ + 1) + 2θ3 + 1 = 2(θ3 + 2θ + 1) + 2θ + 2 = 2θ + 2,

α8 = θ2 + 2θ + 1.

But thenα13 = (θ2 + 2)(2θ + 2)(θ2 + 2θ + 1) = 2(θ2 + 2)(θ + 1)(θ2 − θ + 1) = 2(θ2 + 2)(θ3 + 1) =
2θ(θ2 + 2) = 2(θ3 + 2θ) = −2 = 1. Sinceα13 = 1, we conclude thatα is nota primitive element.
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(b) Determine whetherα is a normal element ofF27. (5)

Solution We have

α = θ2 + 2

α3 = α × α2 = (θ2 + 2)(2θ2 + 2θ + 1)

= 2θ4 + 2θ3 + θ2 + θ2 + θ + 2

= 2θ4 + 2θ3 + 2θ2 + θ + 2

= 2θ(θ3 + 2θ + 1) + 2θ3 + θ2 + 2θ + 2

= 2(θ3 + 2θ + 1) + θ2 + θ = θ2 + θ,

α9 = α × α8 = (θ2 + 2)(θ2 + 2θ + 1)

= (θ − 1)(θ + 1)(θ2 − θ + 1) = (θ + 2)(θ3 + 1)

= θ(θ + 2) = θ2 + 2θ.

Therefore,





α
α3

α9



 =





2 0 1
0 1 1
0 2 1









1
θ
θ2





The determinant of the transformation matrix is2 × (1 − 2) ≡ 1 6≡ 0 (mod 3). Therefore,α is a normal
element ofF27.
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2. Let s andt be bit lengths withs > t. Your task is to find a randoms-bit primep for whichp− 1 has a prime
divisor of bit lengtht.

(a) Describe anefficientalgorithm to compute such a primep. (5)

Solution The following algorithm generates a randoms-bit primep with a randomt-bit prime divisorq of p − 1.

1. Generate a randomt-bit integerq.

2. If q is not prime, go to Step 1.

3. Compute the boundsB1 =
⌈

(2s−1 − 1)/q
⌉

andB2 = ⌊(2s − 2)/q⌋.
4. Generate a random integera in the intervalB1 6 a 6 B2.

5. Setp = aq + 1.

6. If p is not prime, go to Step 4.

7. Returnp (andq, if needed).

(b) Express the expected running time of your algorithm in terms of the bit lengthss andt. (5)

Solution The running time of the above algorithm is dominated by the primality tests in Steps 2 and 6. Let a primality
test on anl-bit integer run in timeO(lk) for some constantk. By the prime number theorem, the probability
for q to be prime (Step 2) isΘ(t), and the probability forp to be prime (Step 6) isΘ(s). That is, we expect to
obtain a primeq after tryingΘ(t) random values. Moreover, we expect to obtain a primep after tryingΘ(s)
multipliersa. It, therefore, follows that the expected running time of the above algorithm isO(sk+1 + tk+1),
that is,O(sk+1) (sincet < s). For the Miller-Rabin test,k = 3, so this running time isO(s4). For the AKS
test, we can takek = 7.5, so the running time becomesO(s8.5).

— Page 3 of 8 —



3. [Pocklington primality test] Let n be a positive odd integer whose primality is to be checked. Write
n − 1 = uv, where the complete prime factorization ofu is known, whereasv is composite with no known
factors. (The casev = 1 is also allowed.) Suppose also that for some integera, we havean−1 ≡ 1 (mod n),
whereasgcd(a(n−1)/q − 1, n) = 1 for all prime divisorsq of u.

(a) Prove that every prime factorp of n satisfiesp ≡ 1 (mod u). (Hint: First, show thatu | ordp(a).) (5)

Solution Since an−1 ≡ 1 (mod n), we evidently havean−1 ≡ 1 (mod p). Moreover, sincep |n, we have
gcd(a(n−1)/q − 1, p) = 1, that is,a(n−1)/q 6≡ 1 (mod p). It follows that ordp(a) = ut for somet | v.
But thenb ≡ at (mod p) has orderu modulop. But ordp(b) |φ(p) = p − 1, that is,u | (p − 1), that is,
p ≡ 1 (mod u).

(b) Conclude that ifu >
√

n , thenn is prime. (5)

Solution Suppose thatn is composite. Take any prime divisorp of n with p 6
√

n . By Part (a),p > u + 1 >
√

n + 1,
a contradiction. Therefore,n must be prime.

— Page 4 of 8 —



(c) Describe a situation when the criterion of Part (b) leads to an efficient algorithm for determining the
primality of n. (Hint: Let all prime factors ofu besmall.) (5)

Solution In order to convert the above observations to an efficient algorithm, we need to clarify two issues.

(1) n − 1 can be written asuv with u, v as above and withu >
√

n . We can keep on making trial divisions
of n − 1 by small primesq1 = 2, q2 = 3, q3 = 5, . . . until n − 1 reduces to a valuev 6

√
n . If n − 1 is not

expressible in the above form, we terminate the procedure and reportfailure after a suitable number of small
primes are tried.

(2) We need an elementa satisfying the two conditionsan−1 ≡ 1 (mod n) andgcd(a(n−1)/q − 1, n) = 1 for
all q|u. If n is indeed prime, any primitive element modulon satisfies these conditions, and there are at least
φ(n − 1) of them. This means that a suitable random basea is expected to be available within a few iterations.

4. Consider the subexponential expression

Ln(ω, c) = exp
[

c (lnn)ω(ln lnn)1−ω
]

for constantsω andc with 0 < ω < 1 andc > 0. Taken ≈ 21024. Find the values of the expressionsn1/4,
Ln(1/2, 1) andLn(1/3, 2). What do these values tell about known integer-factoring algorithms? (5)

Solution We have the following approximate values:

n1/4 = 2256 ≈ 1.158 × 1077,

Ln(1/2, 1) ≈ 298.48 ≈ 4.424 × 1029,

Ln(1/3, 2) ≈ 290.24 ≈ 1.462 × 1027.

These figures indicate that for factoring integers of bit size 1024, fully exponential methods (like Pollard’s rho
method) are very inefficient, the QSM is significantly fasterthan that, and the number-field sieve method is the
fastest.
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5. In the original QSM, we sieve around
√

n . Suppose we instead takeH =
⌈√

2n
⌉

andJ = H2 − 2n.

(a) Describe how we can modify the original QSM to work for these values ofH andJ . It suffices to
describe how we get a relation in the modified QSM. There is no need to describe the sieving process or the
linear-algebra phase, or to recommend optimal values forM (sieving limit) andt (size of the factor base).(5)

Solution For small values ofc, consider the expression

(H + c)2 ≡ H2 + 2cH + c2 ≡ J + 2n + 2cH + c2 ≡ J + 2cH + c2 (mod n).

Call

T (c) = J + 2cH + c2.

SinceH ≈
√

2
√

n , andJ 6 2
√

2
√

n , it follows thatT (c) = O(
√

n ) for small values ofc. We choose a
factor baseB = {p1, p2, . . . , pt} of t small primes. If the integerT (c) factors completely overB, that is, if
T (c) = pα1

1 pα2

2 · · · pαt

t , we get a relation

(H + c)2 ≡ pα1

1 pα2

2 · · · pαt

t (mod n).

By varyingc in the range−M 6 c 6 M , we collects relations. The parametersM andt are so adjusted that
one expects to gets ≫ t (like s = 2t). The resultingt × s system involving the exponentsαij in the collected
relations is solved to obtain a non-trivial congruence of the formx2 ≡ y2 (mod n).

If a small primep divides someT (c), we have(H + c)2 ≡ 2n (mod p), that is,2n is a quadratic residue
modulop. This implies that it suffices to include only those small primes in the factor base, modulo which2n
(notn) is a quadratic residue.
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(b) Explain why the modified QSM is poorer than the original QSM. (Hint: Look at the approximate
average value of|T (c)|.) (5)

Solution SinceH andJ areO(
√

n ), andc is at most a subexponential expression inlog n, it follows that|T (c)| ≈ 2H|c|
for almost all values ofc. In other words, the absolute values ofT (c) are directly proportional to the value of
H. For example, the average value of|T (c)| approximately equals2H × (M/2) = MH. In the original QSM,
H ≈ √

n , whereas in the modified QSM,H ≈
√

2
√

n . This implies that the candidates tested for smoothness
in the modified method are

√
2 times larger than those for the original QSM. For a fixed choice of M and

t, the modified method is, therefore, expected to yield a smaller number of relations than the original method.
Consequently, slightly larger values ofM and/ort are needed by the modified method to yield sufficiently many
relations, that is, the modified method is slightly more inefficient than the original method.
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(c) Despite the objection in Part (b) about the modified QSM, we can exploit it to our advantage. Suppose
that we run two sieves: one around

√
n (the original QSM), and the other around

√
2n (the modified QSM),

each on a sieving interval of length half of that for the original QSM. Justify why this reduction in the length
of the sieving interval is acceptable. Discuss what we gain by using the dual sieve. (5)

Solution Let H = ⌈√n ⌉ (original QSM) andH ′ =
⌈√

2n
⌉

(modified QSM). LetM be the optimal sieving limit when
the original QSM runs alone. In the case of the dual QSM, we runboth the original QSM and the modified
QSM with a sieving limit ofM/2. In the original QSM,2M + 1 candidates (for−M 6 c 6 M ) are tried for
smoothness. In the dual QSM, there are two sieves each handlingM + 1 candidates (for−M/2 6 c 6 M/2).
The total number of candidates for the dual QSM is, therefore, 2M +2. In the original QSM,2M +1 candidates
are expected to supply the requisite number of relations. Sothe dual QSM, too, is expected to supply nearly
the same number of relations, provided that the candidates are not much larger in the dual QSM than in the
original QSM. Indeed, we now show that the dual QSM actually reduces the absolute values of the candidates
by a factor larger than1.

The values of|T (c)| for the original QSM are approximately proportional toH, whereas those for the modified
QSM are roughly proportional toH ′ ≈

√
2 H. In particular, the average value of|T (c)| for the first sieve in

this case is nearly2H × (M/4) = MH/2 (the sieving interval isM/2 now). Moreover, the average value of
|T (c)| for the second sieve is about2H ′ × (M/4) ≈

√
2 MH/2. The average for both the sieves is, therefore,

(1 +
√

2 )MH/4. When the original QSM runs alone, this average isMH. Consequently, the smoothness
candidates in the dual QSM are smaller than those for the original QSM by a factor of4/(1 +

√
2 ) ≈ 1.657.

As a result, the dual QSM is expected to supply more relationsthan the original QSM. Viewed from another
angle, we can take slightly smaller values forM and/ort in the dual QSM than necessary for the original QSM,
that is, the dual QSM is slightly more efficient than the original QSM.

The dual QSM does not consider the larger half of theT (c) values (corresponding toM/2 < |c| 6 M ) for
smoothness tests. It instead runs another sieve. Although the smoothness candidates in the second sieve are
about

√
2 times larger than the candidates in the original sieve, there is an overall reduction in the absolute

values ofT (c) (averaged over the two sieves). This idea was first (apparently) proposed in my PhD thesis (in
connection with the linear sieve method for computing discrete logarithms in prime fields—the LSM is a direct
adaptation of the QSM).
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