$CS 60082/CS 60094\ Computational\ Number\ Theory,\ Spring\ 2010-11$

Class Test 1

	Maximum marks: 20	Date: February 16, 2011 (6:00–7:00pm)	Duration: 1 hour	
	Roll no:	Name:		
	[Write your answers in the	he question paper itself. Be brief and precise. Answer <u>a.</u>	<u>ll</u> questions.]	
1. In the Hensel lifting procedure discussed in the class, we lifted solutions of polynomial congruences of form $f(x) \equiv 0 \pmod{p^e}$ to the solutions of $f(x) \equiv 0 \pmod{p^{e+1}}$. In this exercise, we investigate lift the solutions of $f(x) \equiv 0 \pmod{p^e}$ to solutions of $f(x) \equiv 0 \pmod{p^{2e}}$, that is, the exponent in modulus doubles every time (instead of getting incremented by only 1).			ve investigate lifting	
		and ξ a solution of $f(x) \equiv 0 \pmod{p^e}$. Write $\xi' = \xi + \xi$ which ξ' satisfies $f(\xi') \equiv 0 \pmod{p^{2e}}$.		(5)
Sc	plution Let $f(x) = a_d x^d + a_{d-1} x^{d-1}$	$a_1 + \cdots + a_1 x + a_0$. The binomial theorem with the substitution	$ation x = \xi' gives$	
		$(p^e)^d + a_{d-1}(\xi + kp^e)^{d-1} + \dots + a_1(\xi + kp^e) + a_0$ $(p^e)^d + a_{d-1}(\xi + kp^e)^{d-1} + \dots + a_1(\xi + kp^e) + a_0$		
		dition $f(\xi') \equiv 0 \pmod{p^{2e}}$ implies that $f(\xi) + kp^e f'(\xi) \equiv p^e$. Each solution of this linear congruence modulo p^e gives a		

(b) It is given that the only solution of $2x^3 + 4x^2 + 3 \equiv 0 \pmod{25}$ is 14 $\pmod{25}$. Using the lifting procedure of Part (a), compute all the solutions of $2x^3 + 4x^2 + 3 \equiv 0 \pmod{625}$. (5)

Solution Here, $f(x) = 2x^3 + 4x^2 + 3$, so $f'(x) = 6x^2 + 8x$. For p = 5, e = 2 and $\xi = 14$, we have $f(\xi) = 2 \times 14^3 + 4 \times 14^2 + 3 = 6275$, that is, $f(\xi)/25 \equiv 251 \equiv 1 \pmod{25}$. Also, $f'(\xi) \equiv 6 \times 14^2 + 8 \times 14 \equiv 1288 \equiv 13 \pmod{25}$. Thus, we need to solve $13k \equiv -1 \pmod{25}$. Since $13^{-1} \equiv 2 \pmod{25}$, we have $k \equiv -2 \equiv 23 \pmod{25}$. It follows that the only solution of $2x^3 + 4x^2 + 3 \equiv 0 \pmod{625}$ is $14 + 23 \times 25 \equiv 589 \pmod{625}$.

Solution We have the following sequence of computations:

$$\begin{split} \xi_0 &= \sqrt{3}, \quad a_0 = \lfloor \xi_0 \rfloor = 1, \\ \xi_1 &= 1/(\xi_0 - a_0) = 1/(-1 + \sqrt{3}) = (1 + \sqrt{3})/2, \quad a_1 = \lfloor \xi_1 \rfloor = 1, \\ \xi_2 &= 1/(\xi_1 - a_1) = 2/(-1 + \sqrt{3}) = 1 + \sqrt{3}, \quad a_2 = \lfloor \xi_2 \rfloor = 2, \\ \xi_3 &= 1/(\xi_2 - a_2) = 1/(-1 + \sqrt{3}) = (1 + \sqrt{3})/2, \quad a_3 = \lfloor \xi_3 \rfloor = 1, \end{split}$$

It follows that $\sqrt{3} = \langle 1, 1, 2, 1, 2, 1, 2, \ldots \rangle = \langle 1, \overline{1, 2} \rangle$.

(b) For all
$$k \geqslant 1$$
, write $a_k + b_k \sqrt{3} = (2 + \sqrt{3})^k$ with a_k, b_k integers. Prove that for all $n \geqslant 0$, the $(2n+1)$ -th convergent of $\sqrt{3}$ is $r_{2n+1} = a_{n+1}/b_{n+1}$.

Solution Let $\zeta_k = \langle \underbrace{1,2,1,2,\dots,1,2}, 1 \rangle$. It suffices to show that $\zeta_k = \frac{b_{k+1}}{a_{k+1} - b_{k+1}}$ for all $k \geqslant 0$. We proceed by 1,2 repeated k times induction on k. For k=0, we have $a_1=2$ and $b_1=1$, whereas $\zeta_0=\langle 1\rangle=1=\frac{1}{2-1}=\frac{b_1}{a_1-b_1}$. So assume that $k\geqslant 0$ and $\zeta_k = \frac{b_{k+1}}{a_{k+1}-b_{k+1}}$. But then $\zeta_{k+1}=\langle 1,2,\zeta_k\rangle=1+\frac{1}{2+\frac{1}{\zeta_k}}=1+\frac{1}{2+\frac{a_{k+1}-b_{k+1}}{b_{k+1}}}=1+\frac{b_{k+1}-b_{k+1}}{a_{k+1}+b_{k+1}}=\frac{a_{k+1}+2b_{k+1}}{a_{k+1}+b_{k+1}}$. On the other hand, $a_{k+2}+b_{k+2}\sqrt{3}=(2+\sqrt{3})(a_{k+1}+b_{k+1}\sqrt{3})=(2a_{k+1}+3b_{k+1})+(a_{k+1}+2b_{k+1})\sqrt{3}$, that is, $a_{k+2}=2a_{k+1}+3b_{k+1}$ and $b_{k+2}=a_{k+1}+2b_{k+1}$. Consequently, $\frac{b_{k+2}}{a_{k+2}-b_{k+2}}=\frac{a_{k+1}+2b_{k+1}}{a_{k+1}+b_{k+1}}=\zeta_{k+1}$. This completes the inductive proof.

(**Remark:** a_k, b_k for $k \ge 1$ constitute all the non-zero solutions of the Pell equation $a^2 - 3b^2 = 1$. Proving this requires some exposure to algebraic number theory.)