
CS60082/CS60094 Computational Number Theory, Spring 2010–11

Class Test 1

Maximum marks: 20 Date: February 16, 2011 (6:00–7:00pm) Duration:1 hour

Roll no: Name:

[ Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

1. In the Hensel lifting procedure discussed in the class, we lifted solutions ofpolynomial congruences of the
form f(x) ≡ 0 (mod pe) to the solutions off(x) ≡ 0 (mod pe+1). In this exercise, we investigate lifting
the solutions off(x) ≡ 0 (mod pe) to solutions off(x) ≡ 0 (mod p2e), that is, the exponent in the
modulus doubles every time (instead of getting incremented by only1).

(a) Let f(x) ∈ Z[x], e ∈ N, andξ a solution off(x) ≡ 0 (mod pe). Write ξ′ = ξ + kpe. Show how we
can compute all values ofk for which ξ′ satisfiesf(ξ′) ≡ 0 (mod p2e). (5)

Solution Let f(x) = adx
d + ad−1x

d−1 + · · · + a1x + a0. The binomial theorem with the substitutionx = ξ′ gives

f(ξ′) = ad(ξ + kpe)d + ad−1(ξ + kpe)d−1 + · · · + a1(ξ + kpe) + a0

= f(ξ) + kpef ′(ξ) + p2e × t

for some integert. The conditionf(ξ′) ≡ 0 (mod p2e) implies thatf(ξ) + kpef ′(ξ) ≡ 0 (mod p2e), that is,

f ′(ξ)k ≡ −
(

f(ξ)
pe

)

(mod pe). Each solution of this linear congruence modulope gives a lifted rootξ′ of f(x)

modulop2e.

(b) It is given that the only solution of2x3 + 4x2 + 3 ≡ 0 (mod 25) is 14 (mod 25). Using the lifting
procedure of Part (a), compute all the solutions of2x3 + 4x2 + 3 ≡ 0 (mod 625). (5)

Solution Here, f(x) = 2x3 + 4x2 + 3, so f ′(x) = 6x2 + 8x. For p = 5, e = 2 and ξ = 14, we have
f(ξ) = 2×143+4×142+3 = 6275, that is,f(ξ)/25 ≡ 251 ≡ 1 (mod 25). Also,f ′(ξ) ≡ 6×142+8×14 ≡
1288 ≡ 13 (mod 25). Thus, we need to solve13k ≡ −1 (mod 25). Since13−1 ≡ 2 (mod 25), we
havek ≡ −2 ≡ 23 (mod 25). It follows that the only solution of2x3 + 4x2 + 3 ≡ 0 (mod 625) is
14 + 23 × 25 ≡ 589 (mod 625).
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2. (a) Compute the infinite simple continued fraction expansion of
√

3. (5)

Solution We have the following sequence of computations:

ξ0 =
√

3, a0 = ⌊ξ0⌋ = 1,

ξ1 = 1/(ξ0 − a0) = 1/(−1 +
√

3) = (1 +
√

3)/2, a1 = ⌊ξ1⌋ = 1,

ξ2 = 1/(ξ1 − a1) = 2/(−1 +
√

3) = 1 +
√

3, a2 = ⌊ξ2⌋ = 2,

ξ3 = 1/(ξ2 − a2) = 1/(−1 +
√

3) = (1 +
√

3)/2, a3 = ⌊ξ3⌋ = 1,

· · ·

It follows that
√

3 = 〈1, 1, 2, 1, 2, 1, 2, . . .〉 = 〈1, 1, 2 〉.

(b) For all k > 1, write ak + bk

√
3 = (2 +

√
3)k with ak, bk integers. Prove that for alln > 0, the

(2n + 1)-th convergent of
√

3 is r2n+1 = an+1/bn+1. (5)

Solution Let ζk = 〈 1, 2, 1, 2, . . . , 1, 2
︸ ︷︷ ︸

1, 2 repeatedk times

, 1 〉. It suffices to show thatζk =
bk+1

ak+1 − bk+1
for all k > 0. We proceed by

induction onk. For k = 0, we havea1 = 2 andb1 = 1, whereasζ0 = 〈1〉 = 1 =
1

2 − 1
=

b1

a1 − b1
. So

assume thatk > 0 andζk =
bk+1

ak+1 − bk+1
. But thenζk+1 = 〈1, 2, ζk〉 = 1 +

1

2 + 1
ζk

= 1 +
1

2 + ak+1−bk+1

bk+1

=

1 +
bk+1

ak+1 + bk+1
=

ak+1 + 2bk+1

ak+1 + bk+1
. On the other hand,ak+2 + bk+2

√
3 = (2 +

√
3)(ak+1 + bk+1

√
3) =

(2ak+1+3bk+1)+(ak+1+2bk+1)
√

3, that is,ak+2 = 2ak+1+3bk+1 andbk+2 = ak+1+2bk+1. Consequently,
bk+2

ak+2 − bk+2
=

ak+1 + 2bk+1

ak+1 + bk+1
= ζk+1. This completes the inductive proof.

(Remark: ak, bk for k > 1 constitute all the non-zero solutions of the Pell equationa2 − 3b2 = 1. Proving
this requires some exposure to algebraic number theory.)
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