CS60094 Computational Number Theory ## **Mid-Semester Test** | Maximum marks: 30 | February 26, 2010 | Duration: 2 hours | | |-------------------|-------------------|--------------------------|--| | Roll No | Name | | | | | | | | [This test is open-notes. Answer all questions. Be brief and precise.] - 1 Suppose that $\gcd(r_0,r_1)$ is computed by the repeated Euclidean division algorithm. Suppose also that $r_0 > r_1 > 0$. Let r_{i+1} denote the remainder obtained by the *i*-th division (that is, in the *i*-th iteration of the Euclidean loop). So the computation proceeds as $\gcd(r_0,r_1) = \gcd(r_1,r_2) = \gcd(r_2,r_3) = \cdots$ with $r_0 > r_1 > r_2 > \cdots > r_k > r_{k+1} = 0$ for some $k \geqslant 1$. - (a) If the computation of $gcd(r_0, r_1)$ requires exactly k Euclidean divisions, show that $r_0 \ge F_{k+2}$ and $r_1 \ge F_{k+1}$. Here, F_n is the n-th Fibonacci number: $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. (4) (b) Modify the Euclidean gcd algorithm slightly so as to ensure that $r_i \leqslant \frac{1}{2}r_{i-1}$ for $i \geqslant 2$. Here, r_i need not be the remainder r_{i-2} rem r_{i-1} . - **2** Represent $\mathbb{F}_{64} = \mathbb{F}_{2^6}$ as $\mathbb{F}_2(\theta)$ with $\theta^6 + \theta^3 + 1 = 0$. - (a) Find all the conjugates of θ (over \mathbb{F}_2 as polynomials in θ of degrees < 6). (4) | (b) | Prove or disprove: θ is a primitive element of \mathbb{F}_{64}^* . | (4) | |------------|---|-----| (2) | What is the minimal polynomial of θ^3 over \mathbb{F}_2 ? | (4) | | (c) | what is the minimal polynomial of θ^* over \mathbb{F}_2 ? | (4) | | | | | | | | | | | | |