
CS29003 Algorithms Laboratory

Assignment No: 5

Last date of submission: 12–February–2019

Stacks, Queues, and Trees

In this assignment, you solve two unrelated problems. The first one is on the realization of a queue, and the

second one is on binary trees. In order to reduce your programming overhead, a blackbox BB5 is provided

which provides the following utilities.

• A complete implementation of the stack ADT.

• A constructor of random binary trees.

The details of the blackbox features will be explained in appropriate places. In order use the blackbox, write

following line after your usual #include directives.

#include "BB5.h"

At the beginning of your main() function, call registerme() (this step is optional for this black box).

Moreover, compile your code as:

gcc/g++ mycode.c/mycode.cpp BB5.o

Part 1: Implementation of a queue using two stacks

As the following figure illustrates, a queue Q (see Part (a) of the figure) can be realized from two stacks F

and B (see Part (b)). An arbitrary break-point is chosen (between 979 and 323 in the figure). The part of

Q before this break-point resides in the front stack F , and the part of Q after the break-point resides in the

back stack B. Notice the order in which the elements of Q appear in F and B.

323

846

264

F B

338

314 159 265 358 979 323 846 264

F B

Q

314

159

265

358

979 323

846

264

F B

314

159

265

358

979 323

846

264

F B

159

265

358

979

338

(a) A queue

(c) Enqueue (d) Dequeue

323

846

264

F B

327

338

323

F B

327

338

264

846

F B

327

338

264

846

(e) Dequeue from an empty front stack

(b) Queue in two stacks

An enqueue operation involves pushing the new item to the back stack B (see Part (c)). A dequeue operation

is the same as pop from the front stack F . If F was not empty before the pop, this is straightforward (see

Part (d)). If both F and B are empty, then Q is empty too, and a dequeue from Q is not permitted. If F is

empty but B contains one or more elements (see Part (e)), the element to dequeue lies at the bottom of B,

and cannot be directly accessed. Make a sequence of pop operations from B and push operations of those

elements to F , until B becomes empty. Now, a normal dequeue (pop from F) can be performed.

— Page 1 of 3 —

In order to implement a queue this way, use the implementation of the STACK ADT from BB5. You may now

define your queue as:

typedef struct {

STACK F, B;

} QUEUE;

For a stack S, the ADT calls supplied by BB5 are tabulated below. Only stacks of integers are supported.

S = SINIT() Create an empty stack.

ISEMPTY(S) Returns 1 or 0 depending on whether S is empty or not.

TOP(S) Returns the element (an integer) at the top of S.

S = PUSH(S,x) Push an integer x to the stack S.

S = POP(S) Perform a pop operation from S.

SPRNT2B(S) Print the elements of S from top to bottom.

SPRNB2T(S) Print the elements of S from bottom to top.

You do not need to understand the implementation of the STACK ADT (since your teachers did it, the

operations are efficient). Use the above calls to implement the queue ADT as follows.

Q = QINIT() Create an empty queue.

Q = ENQUEUE(Q,x) Enqueue an integer x to Q.

Q = DEQUEUE(Q) Perform a dequeue operation on Q.

QPRN(Q) Print the elements of Q from front to back.

In your main() function, read a small integer n from the user. Start with an empty queue Q. Make n enqueue

and n dequeue operations on Q. Enqueue randomly generated integers to Q. Never make an attempt to

dequeue from an empty queue. Print the queue after each operation.

Part 2: Level-by-level listing of keys in a binary tree

The blackbox BB5 defines a binary-tree data type as follows. This is declared in BB5.h.

typedef struct _treenode {

int key;

struct _treenode *L, *R, *N;

} treenode;

typedef treenode *TREE;

By calling

T = TGEN(n);

you can construct a random binary tree on n nodes with random key values. A pointer to the root node is

returned by this call. In order to print the tree in a human-readable format, use the following call.

TPRN(T);

The tree constructor of BB5 keeps all the N pointers NULL. Write a function

SETN(T)

to set these pointers as explained now. Let u be a node at level l in T . Impose a left-to-right ordering of the

nodes in each level. If u is not the last node in T at level l, then the N pointer of u should point to the next

node at the same level l. If u is the last node at level l, then the N pointer of u should point to the first node

of the next level (or to NULL if l is the last level in T). Once the N pointers are so adjusted, T becomes

a linked list with respect to these pointers starting at the root and storing the nodes in a level-by-level and

left-to-right-in-each-level order. To implement this function, make a recursive traversal of T , and build a

linked list of nodes at each level. After the traversal completes, join the level-wise lists into a single list.

Write another function TPRNL(T) that makes a level-wise printing of the nodes of T . Use a linked-list print

procedure following the N pointers.

In the main() function, read n (may be the same as in Part 1), build a tree on n nodes by TGEN, print the tree

by TPRN, call SETN to set the N pointers, and then print the resulting linked list by calling TPRNL.

— Page 2 of 3 —

Sample output

n = 12

+++ Part 1

QINIT() : Q = []

ENQUEUE(525) : Q = [525]

ENQUEUE(329) : Q = [525 329]

ENQUEUE(590) : Q = [525 329 590]

DEQUEUE() : Q = [329 590]

DEQUEUE() : Q = [590]

ENQUEUE(911) : Q = [590 911]

DEQUEUE() : Q = [911]

ENQUEUE(297) : Q = [911 297]

DEQUEUE() : Q = [297]

ENQUEUE(428) : Q = [297 428]

ENQUEUE(388) : Q = [297 428 388]

ENQUEUE(249) : Q = [297 428 388 249]

DEQUEUE() : Q = [428 388 249]

DEQUEUE() : Q = [388 249]

ENQUEUE(431) : Q = [388 249 431]

DEQUEUE() : Q = [249 431]

ENQUEUE(405) : Q = [249 431 405]

ENQUEUE(336) : Q = [249 431 405 336]

DEQUEUE() : Q = [431 405 336]

ENQUEUE(733) : Q = [431 405 336 733]

DEQUEUE() : Q = [405 336 733]

DEQUEUE() : Q = [336 733]

DEQUEUE() : Q = [733]

DEQUEUE() : Q = []

+++ Part 2

--- Generated tree

124

L --> 616

| L --> 605

| | L --> NULL

| | R --> 248

| | L --> NULL

| | R --> NULL

| R --> 569

| L --> 771

| | L --> 818

| | | L --> NULL

| | | R --> NULL

| | R --> NULL

| R --> NULL

R --> 615

L --> 202

| L --> 549

| | L --> 403

| | | L --> NULL

| | | R --> NULL

| | R --> NULL

| R --> NULL

R --> 607

L --> NULL

R --> NULL

--- Level-by-level printing

124 616 615 605 569 202 607 248 771 549 818 403

124

202

615

607

549

403818

569

616

605

248 771

Submit a single C/C++ source file. Do not use global/static variables.

— Page 3 of 3 —

