
CS60003 Algorithm Design and Analysis, Autumn 2010–11

Mid-Semester Examination

Maximum marks: 50 September 18, 2010 (AN) Total time:2 hours

Roll no: Name:

[Write your answers in the question paper itself. Be brief andprecise. Answer allquestions.]

1. Let S, T1, T2 be strings of lengthsn,m1,m2 with m1 + m2 6 n. Your task is to locate whether the pattern
T1 ∗ T2 (that is,T1 followed by zero or more symbols followed byT2) can be found inS.

(a) Show by means of an example that there can beΘ(n2) different matches ofT1 ∗ T2 in S. (5)

Solution TakeS = an, T1 = T2 = an/4. The total number of matches ofT1∗T2 in S is (n
2
+1)+ n

2
+(n

2
−1)+ · · ·+1 =

1

2
(n

2
+ 1)(n

2
+ 2) = 1

8
(n + 2)(n + 4) = Θ(n2).

(b) Supply anO(n2)-time algorithm to compute all matches ofT1 ∗ T2 in S. (5)

Solution 1. Use the KMP algorithm to find all matches ofT1 in S. This takesO(n) time.

2. Use the KMP algorithm to find all matches ofT2 in S. This again takesO(n) time.

3. For each match positionj1 of T1 and for each match positionj2 of T2, report a match(j1, j2) of T1 ∗ T2

in S if and only if j1 + m1 6 j2. Since there are at mostO(n) matches ofT1 or T2 in S, the running
time of this step isO(n2).

Note that Step 3 can be implemented more efficiently. However, in view of Part 1(a), we cannot avoid aΘ(n2)
running time in the worst case.

— Page 1 of 8 —

(c) Supply anO(n)-time algorithm to decide whether there is any match of the patternT1 ∗ T2 in S. (5)

Solution 1. Use the KMP algorithm to compute the leftmost match ofT1 in S. If no matches are found, returnfalse,
else go to Step 2. This step takesO(n) time.

2. Let j be the position of the leftmost match ofT1 in S. Run the KMP algorithm to find a match ofT2 in
S[j + m1 . . . n− 1]. If the KMP algorithm returnsno match, returnfalse, else returntrue. This step also
takesO(n) time, and can be used for example, to detect the leftmost match of T1 ∗ T2 in S.

2. Prof. Avarice proposes an algorithm to compute the minimum spanning tree in a connected undirected
graphG = (V,E) with a costc(e) associated with each edgee ∈ E. Your task is to assist Prof. Avarice by
supplying an efficient algorithmic implementation of his idea.

(a) Propose an efficient algorithm that, given an edgee ∈ E, determines whether or note belongs to a
cycle inG. What is the running time of your algorithm? (5)

Solution The following algorithm is based on the fact thate lies on a cycle if and only ifG − e is connected.

1. Delete the edgee from the given graphG = (V, E). Call this graphG′.

2. Run a breadth-first or depth-first traversal in the graphG′ obtained in Step 1. If the traversal indicates
thatG′ is disconnected, returnfalse, else returntrue.

Step 1 can be completed inO(1) time for adjacency-matrix representation, or inO(|V |) time for adjacency-list
representation. A BFS or DFS inG′ can be implemented to run inO(|E| − 1 + |V |) time. Therefore, the total
running time of the above algorithm isO(|E| + |V |).

(b) The MST algorithm of Prof. Avarice goes as follows.

1. SortE in non-increasing order of the edge costs. Store this sortedlist in T .
2. So long asG contains more than|V | − 1 edges, repeat Steps 3–5:
3. Pick the edgee from T with largest cost.
4. If e belongs to a cycle inG, removee from E.
5. Removee from T .
6. Output the reduced graph(V,E).

— Page 2 of 8 —

Demonstrate how Prof. Avarice’s algorithm works on the following graph. (5)

1
3

2

5

7

4

6 9
8

u

v w

x y z

Solution

1
3

2

5

4

6

u

v w

x y z

1
3

2

5

4

6

u

v w

x y z

1
3

2

5

7

4

6
8

u

v w

x y z

1
3

2

5

7

4

6 9
8

u

v w

x y z

1
3

2

5

7

4

6

u

v w

x y z

1
3

24

6

u

v w

x y z

(a) The original graph (b) Deletion of edge of cost 9 (c) Deletion of edge of cost 8

(d) Deletion of edge of cost 7 (e) Edge of cost 6 is not deleted (f) Deletion of edge of cost 5

(c) Describe an efficient implementation of Prof. Avarice’s algorithm. What is the running time of your
implementation? (5)

Solution Let n = |V | andm = |E|. Steps 1, 3 and 5 deal with the edge set ofG. If the set is first sorted, then Step 1
requiresO(m log m) time, and each execution of Steps 3 and 5 takesO(1) time, so the total time for these three
steps isO(m log m). We may alternatively use a max-heap to implement this setT . If so,O(m) time is needed
for initial building of the heap. Subsequently, each max finding or max deletion (Steps 3 and 5) takesO(log m)
time. With this implementation too, the total time for Steps1, 3 and 5 isO(m log m).

The most costly step turns out to be Step 4. This is executedO(m) times with each execution takingO(n + m)
time (by Part 1(a)). So the total complexity of Step 4 isO(m(n + m)). SinceG is connected,m > n − 1, so
this complexity isO(m2).

To sum up, Prof. Avarice’s algorithm can be implemented to run in O(|E|2) time.

(Remark: This is significantly poorer thanO(|E| log |V |) running times of Prim’s and Kruskal’s algorithms.
The difficulty with Prof. Avarice’s algorithm is that Step 4 turns out to be too costly. Both Prim’s and Kruskal’s
algorithms cleverly avoid such costly checks for cycles or connectedness.)

— Page 3 of 8 —

(d) Although Prof. Avarice’s algorithm may be poorer than Prim’s and Kruskal’s MST algorithms in terms
of running time, a more potent danger awaits you. Prove or disprove: Prof. Avarice’s algorithm always
outputs a minimum spanning tree of a connected graph. (5)

Solution Let e = (u, v) be an edge ofG of maximum cost among those that lie on cycles. It suffices to prove thatG has
a minimum spanning tree not containing the edgee. Let T be a minimum spanning tree ofG, that contains the
edgee. Removinge from T disconnectsT to two componentsP andQ (the first containingu, and the second
v). Sincee lies on a cycle inG, this cycle must contain an edgee′ = (u′, v′) of G with u′ ∈ P andv′ ∈ Q. We
may haveu′ = u or v′ = v, but not both. SinceT − e + e′ is again a spanning tree ofG, andT is aminimum
spanning tree ofG, we must havec(e′) = c(e), that is,T − e + e′ is again a minimum spanning tree ofG.

3. We want to mergen sorted listsL1, L2, . . . , Ln of sizesl1, l2, . . . , ln, respectively. Suppose that at any point
of time, we are allowed to merge only two sorted lists, that is, simultaneously mergingt sorted lists fort > 3
is not allowed. (For example, the sorted lists may be residing in files in a palmtop computer which has very
little memory and allows only three opened file pointers at any time.) The effort associated with merging
two sorted lists of sizesu andv is taken asu + v. Your task is to select the merging sequence in such a way
that the total effort of merging the givenn lists is minimized.

(a) Suppose thatn = 4 lists are given with respective sizes10, 20, 30, 40. Find the efforts of the following
two ways of mergingL1, L2, L3, L4: (5)

merge(merge(L1, L2), merge(L3, L4)) and merge(merge(merge(L1, L2), L3), L4).

Solution effort(merge(merge(L1, L2), merge(L3, L4)) = (10 + 20)+ (30 + 40)+ effort(merge(L1 + L2, L3 + L4)) =
30 + 70 + (30 + 70) = 200. On the other hand, effort(merge(merge(merge(L1, L2), L3), L4) = (10 +
20) + effort(merge(merge(L1 + L2, L3), L4)) = 30 + (30 + 30) + effort(merge(L1 + L2 + L3, L4)) =
30 + 60 + (60 + 40) = 190.

— Page 4 of 8 —

(b) Describe anO(n log n)-time algorithm to compute a way of merging the input lists with minimum
possible effort. The input consists only of the lengthsl1, l2, . . . , ln of the lists. Your algorithm should
produce only an optimal merging strategy. It does not have tomerge the lists. However, you should supply
an optimality proof for your algorithm. (10)

Solution Obtain the Huffman tree onn symbols with weightsl1, l2, . . . , ln. If di is the depth of the leafli in a prefix tree

with leavesl1, l2, . . . , ln, then Huffman’s algorithm minimizes
n∑

i=1

dili. It suffices to note that this quantity is

precisely the total effort of mergingL1, L2, . . . , Ln according to the prefix tree.

(Remark: Strictly speaking, the above algorithm cannot run inO(n log n) time. Asymptotically, asn grows to
infinity, the sum

∑n
i=1

li too grows to infinity, even in the case when eachli fits in a constant amount of storage
(like 32-bit int variables). Working with the fractional relative weightslj/

∑n
i=1

li in place oflj does not help
much, since the precision of these floating-point weights needs to grow logarithmically inn. Nonetheless, the
idea of this exercise was to avoid unnecessary complications about input complexity, and focus instead upon
conceptual algorithmic developments. Incidentally, the same problem pertains to the Huffman algorithm to an
exactly equal extent.)

— Page 5 of 8 —

If needed, use this page for continuation of answers from Pages 1–5. Supply appropriate pointers earlier.

— Page 6 of 8 —

Rough work only

— Page 7 of 8 —

Rough work only

— Page 8 of 8 —

