CS60003 Algorithm Design and Analysis, Autumn 2010-11

Mid-Semester Examination

Maximum marks: 50 September 18, 2010 (AN) Total tiddrours

Roll no: Name:

[Write your answers in the question paper itself. Be brief pratise. Answer afjuestions,

1. Let S, Ty, T be strings of lengths, mq, mo with m; + mo < n. Your task is to locate whether the pattern
Ty = Ty (that is, T} followed by zero or more symbols followed) can be found irf.

(@) Show by means of an example that there ca®be?) different matches ofy = 75 in S. 5)

Solution TakeS = a", Ty = T» = a™/*. The total number of matches &+ T in Sis (2 +1)+ 2+ (2—1)+---+1=
2(E+1)(2+2)=1t(n+2)(n+4) =0(n?).

(b) Supply anO(n?)-time algorithm to compute all matchesBf * T» in S. (5)

Solution 1. Use the KMP algorithm to find all matches®f in S. This takesO(n) time.
2. Use the KMP algorithm to find all matches®f in S. This again takeg§)(n) time.

3. For each match positioh of 77 and for each match positioi of 75, report a matclfj,, jo) of 71 * Ty
in S if and only if j; + m; < j2. Since there are at moét(n) matches ofl; or 75 in S, the running

time of this step i) (n?).
Note that Step 3 can be implemented more efficiently. Howéverew of Part 1(a), we cannot avoida(n?)
running time in the worst case.

— Page 1 0of 8 —

(c) Supply anO(n)-time algorithm to decide whether there is any match of theepal; « 75 in S. (5)

Solution 1. Use the KMP algorithm to compute the leftmost matci’oin S. If no matches are found, retufalse,
else go to Step 2. This step takeén) time.

2. Letj be the position of the leftmost match 8f in .S. Run the KMP algorithm to find a match @% in
S[j +m1...n— 1]. If the KMP algorithm returnsio match, returnfalse, else returrirue. This step also
takesO(n) time, and can be used for example, to detect the leftmostmdtt; * 7% in S.

2. Prof. Avarice proposes an algorithm to compute the minimgansing tree in a connected undirected
graphG = (V, E) with a costc(e) associated with each edge= E. Your task is to assist Prof. Avarice by
supplying an efficient algorithmic implementation of his&d

(&) Propose an efficient algorithm that, given an edge FE, determines whether or netbelongs to a
cycle inG. What is the running time of your algorithm? (5)

Solution The following algorithm is based on the fact tledies on a cycle if and only it — e is connected.

1. Delete the edgefrom the given grapltz = (V, E). Call this graphG’.

2. Run a breadth-first or depth-first traversal in the gréfftobtained in Step 1. If the traversal indicates
thatG’ is disconnected, returfalse, else returrirue.

Step 1 can be completed@(1) time for adjacency-matrix representation, 0101V |) time for adjacency-list
representation. A BFS or DFS @&’ can be implemented to run ®(|E| — 1 + |V]) time. Therefore, the total
running time of the above algorithm @(| E| + |V]).

(b) The MST algorithm of Prof. Avarice goes as follows.

1. SortE in non-increasing order of the edge costs. Store this sdigteith 7.
2. Solong ag~ contains more thafi/| — 1 edges, repeat Steps 3-5:

3 Pick the edge from T with largest cost.

4. If e belongs to a cycle idr, removee from E.

5 Remove: from T'.

6. Output the reduced gragh, £).

— Page 2 0of 8 —

Demonstrate how Prof. Avarice’s algorithm works on thedaling graph. (5)

(a) The original graph (b) Deletion of edge of cost 9 (c) Deletion of edge of ¢
Solution
1 5
5.

(d) Deletion of edge of cost 7 (e) Edge of cost 6 is not deleted (f) Deletion of edge o

\Z/

(c) Describe an efficient implementation of Prof. Avarice’salthm. What is the running time of your
implementation? (5)

Solution Letn = |V|andm = |E|. Steps 1, 3 and 5 deal with the edge seoflf the set is first sorted, then Step 1
requiresO(m logm) time, and each execution of Steps 3 and 5 taik€ly time, so the total time for these three
steps i0(mlogm). We may alternatively use a max-heap to implement thig'sétso, O(m) time is needed
for initial building of the heap. Subsequently, each maxifigcbr max deletion (Steps 3 and 5) takedog m)
time. With this implementation too, the total time for Stdp8 and 5 i<O(m logm).

The most costly step turns out to be Step 4. This is exeaqdted) times with each execution takirg(n + m)
time (by Part 1(a)). So the total complexity of Step 9ign(n + m)). SinceG is connectedin > n — 1, so
this complexity isQ (m?).

To sum up, Prof. Avarice’s algorithm can be implemented wiruO(|E|?) time.

(Remark: This is significantly poorer thao)(|E|log |V]) running times of Prim’s and Kruskal's algorithms.
The difficulty with Prof. Avarice’s algorithm is that Step drhs out to be too costly. Both Prim’s and Kruskal's
algorithms cleverly avoid such costly checks for cyclesamrectedness.)

— Page 30f8 —

(d) Although Prof. Avarice’s algorithm may be poorer than Psrahd Kruskal's MST algorithms in terms
of running time, a more potent danger awaits you. Prove qrdig: Prof. Avarice’s algorithm always
outputs a minimum spanning tree of a connected graph. (5)

Solution Lete = (u,v) be an edge off of maximum cost among those that lie on cycles. It sufficegtogthatG has
a minimum spanning tree not containing the edgeetT" be a minimum spanning tree 6f, that contains the
edgee. Removinge from T" disconnectq§” to two component® and((the first containing:, and the second
v). Sincee lies on a cycle inG, this cycle must contain an edge= (v/,v") of G with «’ € P andv’ € Q. We
may haver’ = v orv’ = v, but not both. Sincd” — e + ¢’ is again a spanning tree 6f, and7’ is aminimum
spanning tree of7, we must have(e’) = c¢(e), thatis,T — e + €’ is again a minimum spanning tree Gf

3. We want to merge, sorted listsL1, Lo, ..., L, of sizesly, s, ..., [, respectively. Suppose that at any point
of time, we are allowed to merge only two sorted lists, thasiimultaneously mergingsorted lists for > 3
is not allowed. (For example, the sorted lists may be regidirfiles in a palmtop computer which has very
little memory and allows only three opened file pointers at time.) The effort associated with merging
two sorted lists of sizes andwv is taken as: + v. Your task is to select the merging sequence in such a way
that the total effort of merging the givenlists is minimized.

(&) Suppose that = 4 lists are given with respective siz&g, 20, 30, 40. Find the efforts of the following
two ways of mergingly, Lo, L3, Ly: (5)

mergémerge L1, Lo), mergé L3, L4)) and mergémergémerge Ly, Lo), L3), Ly).

Solution effort(mergémergé L., Lo), merg€Ls, Ls)) = (104 20) + (30 + 40) + effort(mergé L, + Lo, L3 + L4))
30 + 70 + (30 + 70) = 200. On the other hand, effdrergémergémergé Ly, Ly), L3), Ls) = (10
20) + effort(mergémergd Ly + Lo, L3), Ly)) = 30 + (30 4 30) + effort(merg€L, + Lo + L3, L4))
30 + 60 + (60 + 40) = 190,

I |

— Page 4 of 8 —

(b) Describe anO(nlogn)-time algorithm to compute a way of merging the input listgshaminimum

possible effort. The input consists only of the lengthds,...,[, of the lists. Your algorithm should
produce only an optimal merging strategy. It does not havadae the lists. However, you should supply
an optimality proof for your algorithm. (20)

Solution Obtain the Huffman tree on symbols with weight$,, I5, . . ., [,,. If d; is the depth of the ledf in a prefix tree
with leavedly, ls, . . ., l,, then Huffman’s algorithm minimizeg d;1;. 1t suffices to note that this quantity is

i=1
precisely the total effort of mergingyy, Lo, . .., L,, according to the prefix tree.

(Remark: Strictly speaking, the above algorithm cannot ruifr log n) time. Asymptotically, as grows to
infinity, the sum}_""_, I; too grows to infinity, even in the case when eécfits in a constant amount of storage
(like 32-bit int variables). Working with the fractional relativesightsl; / """, I; in place ofl; does not help
much, since the precision of these floating-point weightsdsgo grow logarithmically im. Nonetheless, the
idea of this exercise was to avoid unnecessary complicadpout input complexity, and focus instead upon
conceptual algorithmic developments. Incidentally, thme problem pertains to the Huffman algorithm to an
exactly equal extent.)

— Page50f8 —

If needed, use this page for continuation of answers from Pagg 1-5. Supply appropriate pointers earlier.

— Page 6 of 8 —

Rough work only

— Page 7 0of 8 —

Rough work only

— Page 8 0of 8 —

