
CS60003 Algorithm Design and Analysis, Autumn 2010–11

End-Semester Examination

Maximum marks: 100 November 21, 2010 (FN) Total time:3 hours

Roll no: Name:

[Write your answers in the question paper itself. Be brief andprecise. Answer allquestions.]

1. The knapsack problem discussed in the class is an optimization problem. Consider the following decision
version of the knapsack problem. Givenn objectsO1, O2, . . . , On with respective weightsw1, w2, . . . , wn

and with respective profitsp1, p2, . . . , pn, and given a knapsack of capacityC and a profit boundP ,
decide whether there exists a subcollectionOi1 , Oi2 , . . . , Oik of the given objects such that

∑k
j=1

wij 6 C

(knapsack capacity cannot be exceeded) and
∑k

j=1
pij > P (at least a profit ofP can be made).

(a) Prove that the decision version of the knapsack problem can be solved in polynomial time if and only
if the optimization version of the knapsack problem can be solved in polynomial time. (10)

Solution [If] Let M be a polynomial-time algorithm for solving the maximization problem. UsingM , we determine the
maximum profitP ∗, and returntrue if and only if P ∗ > P .

[Only if] Let D be a polynomial-time algorithm for solving the decision problem. We invokeD multiple
times with separate profit boundsP in order to determine the maximum profitP ∗. Initially, we start with
L = 0 andR =

∑n

i=1
pi, since we definitely know thatP ∗ must lie between these two values. We compute

P = ⌊(L + R)/2⌋, and callD with this profit boundP . If D returnstrue, we conclude thatP ∗ is betweenP
andR, so we setL = P . On the other hand, ifD returnsfalse, we setR = P − 1, sinceP ∗ must be smaller
thanP . This binary search procedure is repeated until we haveL = R. We output this value (L = R) asP ∗.

The total number of invocations ofD is O(log
∑n

i=1
pi) which isO(log(npmax)). Since each invocation runs

in polynomial time, the total running time is polynomial inn andlog pmax.

— Page 1 of 12 —

(b) Prove that the decision version of the knapsack problem is NP-Complete.

(Hint: You may use the partition problem which, given positive integersa1, a2, . . . , an with A =
∑n

i=1
ai,

decides whether there exists a subcollectionai1 , ai2 , . . . , aik with
∑k

j=1
aij = A/2.) (10)

Solution Clearly, the decision version of the knapsack problem is in NP.

In order to prove its NP-hardness, we reduce PARTITION to it.Let a1, a2, . . . , an be an input instance for
PARTITION with A =

∑n

i=1
ai.

We considern objectsO1, O2, . . . , On such that the weight ofOi is wi = 2ai and the profit ofOi is pi = 2ai.
Finally, we take the knapsack capacityC = A and the profit boundP = A. Clearly, this reduction can be done
in polynomial time.

Suppose that
∑k

j=1
aij

= A/2 for some subcollectionai1 , ai2 , . . . , aik
of a1, a2, . . . , an. But then

∑k

j=1
wij

=

2 × (A/2) 6 C and
∑k

j=1
pij

= 2 × (A/2) > P , that is, the objectsOi1 , Oi2 , . . . , Oik
satisfy the capacity

constraint and the profit bound.

Conversely, suppose that the objectsOi1 , Oi2 , . . . , Oik
satisfy

∑k

j=1
wij

6 C and
∑k

j=1
pij

> P . These,

in turn, imply that
∑k

j=1
2aij

6 A and
∑k

j=1
2aij

> A, that is,
∑k

j=1
aij

= A/2. Therefore, the integers
ai1 , ai2 , . . . , aik

satisfy the requirement of the PARTITION problem.

2. A cut in an undirected graphG = (V,E) is a partition ofV in two (disjoint) subsetsS, T . Define by
E(S, T) the set of all edges ofG with one endpoint inS and the other inT . The MAX-CUT problem is an
optimization problem that determines a cutS, T for which the size of the setE(S, T) (the number of cross
edges) is as large as possible.

Recall that in the Ford-Fulkerson algorithm, we have dealt with minimumcuts in order to solve the dual
problem of maximizing network flow. The Ford-Fulkerson algorithm is not truly polynomial-time, but has
variants that run in polynomial time in the input size. The MAX-CUT problem (more correctly, a suitable
decision version of this problem), on the other hand, is NP-Complete (you are not asked to prove this).

Prof. Myopia proposes the following approximation algorithm for solving the MAX-CUT problem.

— Page 2 of 12 —

1. Start with an arbitrary partitionS, T of V .

2. Repeat the following two steps until no further vertex movement is possible:

(a) For each vertexv ∈ S, check whether the cut(S−v, T +v) has more cross edges than(S, T);
and if so, deletev from S and includev in T .

(b) For each vertexv ∈ T , check whether the cut(S+v, T −v) has more cross edges than(S, T);
and if so, deletev from T and includev in S.

3. ReturnS, T .

(a) Prove that Prof. Myopia’s algorithm runs in polynomial time(in the input size). (5)

Solution First, note that Prof. Myopia’s algorithm terminates, since each vertex movement strictly increases the size
of E(S, T). Let n = |V | andm = |E|. Prof. Myopia’s algorithm does not require more thanm vertex
movements. Each vertex movement can be completed inO(n2) time under any standard representation of
G (like the adjacency-matrix representation). In fact, checking whether|E(S − v, T + v)| > |E(S, T)| (or
|E(S + v, T − v)| > |E(S, T)|) requires looking at the neighbors ofv only. Moreover, a vertex suitable for
shifting is to be found out amongn candidates. To sum up, Prof. Myopia’s algorithm can be implemented to
run inO(mn2) time.

(b) Prove or disprove: Prof. Myopia’s algorithm outputs the optimal solution for bipartite graphs. (5)

Solution False.Consider the following bipartite graph (the complete bipartite graphK4,4). Suppose that we start with
the partitionS, T as shown. Migration of any vertex fromS or T to the other part cannot increaseE(S, T),
since each vertex has two neighbors inS and two neighbors inT too. Thus, Prof. Myopia’s algorithm reports
this locally maximum solution for which|E(S, T)| = 8. On the other hand,|E(V1, V2)| = |E| = 16.

TS

V

1

2

V

— Page 3 of 12 —

(c) Prove that the approximation ratio of Prof. Myopia’s algorithm is1/2. (5)

Solution Suppose that at some point of time,S, T satisfy|E(S, T)| < m/2. Let ci be the number of cross edges incident
upon thei-th vertexvi, andbi the number of non-cross edges incident uponvi. Clearly,bi + ci = di (the degree
of vi). By the degree-sum formula,

2m =
n

∑

i=1

di =
n

∑

i=1

bi +
n

∑

i=1

ci =
n

∑

i=1

bi + 2|E(S, T)| <
n

∑

i=1

bi + m,

that is,
∑n

i=1
bi > m, that is,

∑n

i=1
bi >

∑n

i=1
ci. This implies that there must exist (at least) one vertexvi for

which bi > ci. Shiftingvi to the other part increases the number of cross edges bybi − ci > 0. To sum up,
Prof. Myopia’s algorithm stops after (not necessarily immediately after)|E(S, T)| > m/2. On the other hand,
an optimal cutS∗, T ∗ evidently satisfies|E(S∗, T ∗)| 6 m. Thus,|E(S, T)|/|E(S∗, T ∗)| > 1/2.

(d) Demonstrate that this approximation ratio is tight (suggest an infinite family of graphs). (5)

Solution The construction of Part (b) can be generalized. Consider the complete bipartite graphK2n,2n for anyn > 1.
The optimal cut isV1, V2 for which |E(V1, V2)| = 4n2. On the other hand, Prof. Myopia’s algorithm may start
with S consisting of exactlyn vertices fromV1 and exactlyn vertices fromV2. It is easy to see that this is a
local maximum with|E(S, T)| = 2n2.

— Page 4 of 12 —

3. The subset-sum problem (SSP) decides whether a given collection of positive integersa1, a2, . . . , an has a
subcollection whose elements add up to a given positive integer t. We proved that SSP is an NP-Complete
problem. Recall also that an algorithm is calledpseudo-polynomial-time, if its running time is a polynomial
in the size of theunary representation of the input. We call an NP-Complete problemweakly NP-Complete
if it admits a pseudo-polynomial-time algorithm. Prove that SSP is weakly NP-Complete.

(Hint: The knapsack problem might help you. Also note that the unary size ofa1, a2, . . . , an isn+
∑n

i=1
ai.) (20)

Solution Let a1, a2, . . . , an be the integers andt the target sum in an instance of SSP. LetA =
∑n

i=1
ai. The unary

size of this input isO(A + n) (assume thatt 6 A). Thus, we need to have an algorithm with running time
polynomial in bothn andA. Here goes one.

Build an(n + 1) × (A + 1) tableT such thatT (i, j) is the decision of SSP ona1, a2, . . . , ai, j. The table is
populated in the row-major order. The zeroth row is initialized as

T (0, j) =

{

1 if j = 0,
0 if j > 0.

Here,i = 0 means there are no input integersai, so the only sum achievable is0.

Subsequently, fori > 1, we consider two cases. Ifj < ai, then we cannot includeai to achieve a sum ofj,
that is, a sum ofj is achievable if and only if the firsti− 1 integers have a subcollection of sumj. On the other
hand, ifj > ai, then we have a choice of includingai in a subcollection. If we includeai, we check whether
the remaining sumj − ai can be achieved by a subcollection of the firsti− 1 integers. If we do not includeai,
then the sumj itself has to be achieved by a subcollection ofa1, a2, . . . , ai−1. To sum up, we have

T (i, j) =

{

T (i − 1, j) if j < ai,
T (i − 1, j − ai) OR T (i − 1, j) if j > ai.

Finally, we returnT (n, t) as the output.

This algorithm needs to compute6 (n + 1)(A + 1) entries in the tableT with each entry requiring onlyO(1)
time (betterO(log n + log A) time, sincei can be as large asn andj as large asA). It follows that the running
time is polynomial in bothn andA, as desired.

— Page 5 of 12 —

— Page 6 of 12 —

4. Consider the problem of finding thei-th smallest element in an arrayA of n integers. Ms. Lucky proposes
the following randomized algorithm to solve this problem. She chooses a (uniformly) random elementx of
A. She then uses the partitioning algorithm of Quick Sort onA with respect to the pivotx. Suppose thatx
is placed in thek-th position after the partitioning (counting starts from1). If k = i, the algorithm returnsx.
If k > i, then a recursive call is made on the smaller subarray (of sizek − 1) and with the samei. Finally, if
k < i, then a recursive call is made on the larger subarray (of sizen − k) with i replaced byi − k. Deduce
that the expected running time of Ms. Lucky’s algorithm isO(n log n). (Notice that this running time may
depend uponi (in addition ton). In your calculations, you may suitably ignore this dependence.) (20)

Solution Let T (n) denote the expected running time of Ms. Lucky’s algorithm onan array of sizen. Since the pivot is
chosen randomly, each of then possible values (1, 2, . . . , n) of k is equally likely, that is, of probability1/n. If
k = i (a case with probability1/n), the algorithm stops after returning the pivot. This case takes constant time.
If k > i, a recursive call is made on a subarray of sizek−1. Finally, if k < i, the recursive call is on a subarray
of sizen − k. Forn > 2, it then follows that

T (n) 6
1

n
+

1

n

(

T (i) + T (i + 1) + · · · + T (n − 1)
)

+

1

n

(

T (n − i + 1) + T (n − i + 2) + · · · + T (n− 1)
)

+ cn.

Here, the termcn on the right side stands for the running time of the partitioning phase. Let us also take

T (1) = 1.

Forn > 3, we then have

nT (n)− (n − 1)T (n− 1) 6 2T (n− 1) − T (n− i) + c(2n − 1) 6 2T (n− 1) + c(2n − 1),

that is,

T (n)

n + 1
6

T (n − 1)

n
+ c

[

2n − 1

n(n + 1)

]

=
T (n − 1)

n
+ c

[

3

n + 1
−

1

n

]

6
T (n − 2)

n − 1
+ c

[

3

(

1

n + 1
+

1

n

)

−

(

1

n
+

1

n − 1

)]

6
T (n − 3)

n − 2
+ c

[

3

(

1

n + 1
+

1

n
+

1

n − 1

)

−

(

1

n
+

1

n − 1
+

1

n − 2

)]

6 · · ·

6
T (2)

3
+ c

[

3

(

1

n + 1
+

1

n
+

1

n − 1
+ · · · +

1

4

)

−

(

1

n
+

1

n − 1
+

1

n − 2
+ · · · +

1

3

)]

.

This implies that

T (n) 6

(

n + 1

3

)

T (2) + 3c + c(n + 1)

[

3

(

Hn −
1

1
−

1

2
−

1

3

)

−

(

Hn −
1

1
−

1

2

)]

.

SinceT (2) is a constant andHn is Θ(log n), the expected running time of Ms. Lucky’s algorithm isO(n log n).

— Page 7 of 12 —

5. You are given a set ofn chords in a circle. Each chord may be viewed as an opaque pieceof string. Your
task is to determine which chords are visible (fully or partially) from the center. An example is given below.
The dotted chords are the only chords that are not visible (not even partially) from the center.

— Page 8 of 12 —

(a) Propose anO((n + h) log n)-time ray-sweep algorithm for solving this problem, whereh is the total
number of intersections of the given chords. Clearly describe the events in your algorithm and how they are
handled. Assume that the chords are in general position, that is, no two of them share an endpoint, and no
three of them are concurrent. (10)

Solution A ray emanating from the center of the circle makes a full sweep of 3600 starting from the horizontal right
position. A chord is active at a position of the ray, if the rayintersects the chord. We maintain two data
structures as usual.

The sweep ray informationS stores the list of all chords that are currently active. Thislist is kept sorted in
accordance with their distances from the center along the sweeping ray.

Theevent queueQ stores the endpoints of the chords, that are yet to be encountered.Q should also store the
intersection of the pair of chordsCi, Cj provided that both are active and are consecutive along the ray and has
an intersection point lying after the current location of the ray. Q is kept sorted in the increasing order of the
angle from the initial position of the ray.

S is initialized to the list of active chords at the beginning position of the sweeping ray.Q is initialized by the
2n endpoints of the chords and the intersection points of consecutive active chords (provide that the intersection
exists and lies in a future position of the sweeping ray).

The following three events are handled. In all these cases, an event is deleted fromQ after it is handled.

Enter chord Ci: Ci is inserted inS. At this point,Ci is farthest from the center among all active chords.
However, ifCi is theonly active chord, it is reported as visible. If not, letCs be the second farthest active
chord. The intersection point∩(Cs, Ci) (if it exists and is a future event) is inserted inQ.

Leave chordCi: DeleteCi from S. Just before this deletion,Ci was the farthest active chord from the center.
Consequently, nothing else needs to be done.

Intersection of chords Ci, Cj : Swap the positions ofCi andCj in S. Assume thatCi was nearer to the
center thanCj before this swapping. IfCi happened to be the closest active chord from the center (before the
swapping), thenCj is reported as visible. LetCs, Ct be the neighbors of the pairCi, Cj on S (one or both of
these neighbors may be non-existent). The intersection points∩(Cs, Ci) and∩(Cj , Ct) are deleted fromQ (if
they were inQ at all), and the intersection points∩(Cs, Cj) and∩(Ci, Ct) are added toQ, if it is appropriate
to do so.

— Page 9 of 12 —

(b) Mention relevant data structures that your algorithm uses (like the organization of the event queue and
the sweep-ray information). (5)

Solution Q must support arbitrary insertions and deletions, and may beorganized as a height-balanced binary search
tree (like an AVL tree).S must support insertions and deletions of maximum, arbitrary swaps of consecutive
elements, and checks for minimum, soS may again be realized as a height-balanced BST.

(c) Deduce that the running time of your algorithm isO((n + h) log n). (5)

Solution Initialization ofQ andS can be done inO(n log n) time (O(n) insertions in the height-balanced BST’s.) There
are exactlyn enter chord events,n leave chord events andh intersection events. Each event involvesO(1)
insertions and deletions in two BST’s. The BST realizingS is of maximum sizen, whereas the BST realizing
Q is of maximum sizen + (n− 1), indicating that each tree insertion or deletion can be donein O(log n) time.

— Page 10 of 12 —

For rough work. If used for continuation of answers from Pages 1–10, supply appropriate pointers earlier.

— Page 11 of 12 —

For rough work. If used for continuation of answers from Pages 1–10, supply appropriate pointers earlier.

— Page 12 of 12 —

