CS60003 Algorithm Design and Analysis, Autumn 2010-11

End-Semester Examination

Maximum marks: 100 November 21, 2010 (FN) Total tidéours

Roll no: Name:

[Write your answers in the question paper itself. Be brief pratise. Answer afjuestions,

1. The knapsack problem discussed in the class is an optimizatoblem. Consider the following decision
version of the knapsack problem. GiverobjectsO, O, . .., O, with respective weightsa, wo, . .., w,
and with respective profitg, po,...,p,, and given a knapsack of capacify and a profit boundP,
decide whether there exists a subcollection, O;,, . .., O;, of the given objects such thgijfz1 wy; < C

(knapsack capacity cannot be exceeded)@ﬁg1 pi; = P (atleast a profit of” can be made).

(@) Prove that the decision version of the knapsack problem easolved in polynomial time if and only
if the optimization version of the knapsack problem can beesbin polynomial time. (10)

Solution [If] Let M be a polynomial-time algorithm for solving the maximizatiporoblem. UsingV/, we determine the
maximum profitP*, and returrtrue if and only if P* > P.

[Only if] Let D be a polynomial-time algorithm for solving the decision lplem. We invokeD multiple
times with separate profit bound3 in order to determine the maximum profit*. Initially, we start with

L =0andR =)", p;, since we definitely know tha®P* must lie between these two values. We compute
P = |(L+ R)/2], and callD with this profit boundP. If D returnstrue, we conclude thaP* is betweenP
andR, so we sefl. = P. On the other hand, iD returnsfalse we setkR = P — 1, sinceP* must be smaller
thanP. This binary search procedure is repeated until we Have R. We output this valuelf = R) asP*.

The total number of invocations d@ is O(log Y-, p;) which isO(log(npmax)). Since each invocation runs
in polynomial time, the total running time is polynomialinandlog p,,.q. -

— Page 1of 12 —

(b) Prove that the decision version of the knapsack problem iCldPplete.

(Hint: You may use the partition problem which, given poagtintegerss;, ag, . .., a, with A = """, a;,
decides whether there exists a subcollectigna;,, . . ., a;, with Zle a;; = A/2.) (20)

Solution Clearly, the decision version of the knapsack problem isi N

In order to prove its NP-hardness, we reduce PARTITION to_&t a4, as, ..., a, be an input instance for
PARTITION with A = >"" | a;.

We considen objectsO1, Os, .. ., O,, such that the weight a; is w; = 2a; and the profit oD; is p; = 2aq;.
Finally, we take the knapsack capadity= A and the profit boun@® = A. Clearly, this reduction can be done
in polynomial time.

Suppose thaz:;?:1 a;, = A/2forsome subcollection;, , a;,, . ..,a;, 0fai,as, ..., an. Butthenzg?:1 w;; =
2x (4/2) L C andzljzlpij =2 x (A/2) > P, thatis, the object®);,, O,,, ..., 0;, satisfy the capacity
constraint and the profit bound.

Conversely, suppose that the obje€ts, O;, ..., 0;, satisfny:1 w;, < C and Zlepij > P. These,

in turn, imply thath:1 2a;; < Aand Z?Zl 2a;; > A, that is,zl;:l a;; = A/2. Therefore, the integers
iy s iy, - - -, a;, Satisfy the requirement of the PARTITION problem.

2. A cut in an undirected grapty = (V, E) is a partition of V' in two (disjoint) subsetsS, T. Define by
E(S,T) the set of all edges af with one endpoint irt and the other irf". The MAX-CUT problem is an
optimization problem that determines a <ytI" for which the size of the sdt (.S, T") (the number of cross
edges) is as large as possible.

Recall that in the Ford-Fulkerson algorithm, we have deatlh winimumcuts in order to solve the dual
problem of maximizing network flow. The Ford-Fulkerson algom is not truly polynomial-time, but has
variants that run in polynomial time in the input size. The X&EUT problem (more correctly, a suitable
decision version of this problem), on the other hand, is Nifa@lete (you are not asked to prove this).

Prof. Myopia proposes the following approximation algamit for solving the MAX-CUT problem.

— Page 2 of 12 —

1. Start with an arbitrary partitios, 7" of V.
2. Repeat the following two steps until no further vertex ement is possible:

(a) Foreach vertex € S, check whether the cytS —v, T'+v) has more cross edges th@gh 7');
and if so, delete from .S and includev in 7.

(b) Foreach vertex € T', check whether the cytS +v, T'—v) has more cross edges thegh 7');
and if so, delete from 7" and includev in S.

3. Returns, T'.

(@) Prove that Prof. Myopia'’s algorithm runs in polynomial tirfie the input size). (5)

Solution First, note that Prof. Myopia’s algorithm terminates, sireach vertex movement strictly increases the size
of E(S,T). Letn = |V| andm = |E|. Prof. Myopia’s algorithm does not require more thanvertex
movements. Each vertex movement can be completadl(it?) time under any standard representation of
G (like the adjacency-matrix representation). In fact, dtieg whether| E(S — v, T + v)| > |E(S,T)| (or
|E(S +v,T —v)| > |E(S,T)|) requires looking at the neighbors ofonly. Moreover, a vertex suitable for
shifting is to be found out among candidates. To sum up, Prof. Myopia’s algorithm can be imgleted to
run in Q(mn?) time.

(b) Prove or disprove: Prof. Myopia’s algorithm outputs theimgtl solution for bipartite graphs. (5)

Solution False.Consider the following bipartite graph (the complete bipagraphk, 4). Suppose that we start with
the partitionS, T' as shown. Migration of any vertex froisi or T' to the other part cannot increag#s, T'),
since each vertex has two neighborsSimnd two neighbors i too. Thus, Prof. Myopia’s algorithm reports
this locally maximum solution for whichZ (S, T')| = 8. On the other handE(V4, V2)| = |E| = 16.

— Page 30of 12 —

(c) Prove that the approximation ratio of Prof. Myopia’s algjom is1/2. (5)

Solution Suppose that at some point of tinte, " satisfy| E(S, T')| < m/2. Letc; be the number of cross edges incident
upon thei-th vertexw;, andb; the number of non-cross edges incident upprClearly,b; + ¢; = d; (the degree
of v;). By the degree-sum formula,

:idi:ibi—i—icz Zn:b +2|EST|<Zb +m,
=1

i=1 =1 =1 i=1

thatis,>_"" ; b; > m, thatis,>_"" , b; > >_"" | ¢;. Thisimplies that there must exist (at least) one veutefor
which b; > ¢;. Shiftingv; to the other part increases the number of cross edgés byc; > 0. To sum up,
Prof. Myopia’s algorithm stops after (not necessarily intiagely after)| E(S,T)| = m/2. On the other hand,
an optimal cutS*, T* evidently satisfie$E (S*, T*)| < m. Thus,|E(S,T)|/|E(S*,T*)| > 1/2.

(d) Demonstrate that this approximation ratio is tight (suggesnfinite family of graphs). (5)

Solution The construction of Part (b) can be generalized. Considectimplete bipartite grapi’s,, 2, foranyn > 1
The optimal cut id/, V5 for which | E(Vy, V5)| = 4n?. On the other hand, Prof. Myopia’s algorithm may start
with S consisting of exactly: vertices fromV; and exactlyn vertices fromVs. It is easy to see that this is a
local maximum with E(S, T')| = 2n?.

— Page 4 of 12 —

3. The subset-sum problem (SSP) decides whether a given tofiexf positive integers.;, as, .. ., a, has a
subcollection whose elements add up to a given positivgémte We proved that SSP is an NP-Complete
problem. Recall also that an algorithm is calfgkudo-polynomial-timef its running time is a polynomial
in the size of thainaryrepresentation of the input. We call an NP-Complete problaakly NP-Complete
if it admits a pseudo-polynomial-time algorithm. Provett8&P is weakly NP-Complete.

(Hint: The knapsack problem might help you. Also note thetuhary size ofi;, ag, ..., a, iSn+Y ;- a;.) (20)

Solution Let a1, as, . .., a, be the integers antdthe target sum in an instance of SSP. let= Z?:l a;. The unary
size of this input iSO(A + n) (assume that < A). Thus, we need to have an algorithm with running time
polynomial in bothn and A. Here goes one.

Build an(n + 1) x (A + 1) tableT such thatl'(i, j) is the decision of SSP am, as, ..., a;,j. The table is
populated in the row-major order. The zeroth row is initiali as

L1 ifj=0,
T(O’J)_{o if j > 0.

Here,i = 0 means there are no input integersso the only sum achievable(s

Subsequently, foi > 1, we consider two cases. Jf< a;, then we cannot include; to achieve a sum of,
that is, a sum of is achievable if and only if the firgt— 1 integers have a subcollection of symOn the other
hand, ifj > «a;, then we have a choice of includilg in a subcollection. If we include;, we check whether
the remaining sum — a, can be achieved by a subcollection of the first 1 integers. If we do not include;,
then the suny itself has to be achieved by a subcollectiomgfas, ..., a;_1. To sum up, we have

N T@E-1,7) if 7 < ay,
T(Z’])_{T(i—l,j—ai) OR T(i—1,7) ifj> as.
Finally, we returril’(n, t) as the output.

This algorithm needs to compuge (n + 1)(A + 1) entries in the tablg" with each entry requiring onlg (1)
time (betterO(logn + log A) time, sincei can be as large asand; as large asl). It follows that the running
time is polynomial in botlm and A, as desired.

— Page50f 12 —

— Page 6 of 12 —

4. Consider the problem of finding theth smallest element in an array of n integers. Ms. Lucky proposes
the following randomized algorithm to solve this problenmeShooses a (uniformly) random elemenaf
A. She then uses the partitioning algorithm of Quick Sortdowith respect to the pivat. Suppose that
is placed in thé-th position after the partitioning (counting starts fra If k& = ¢, the algorithm returns.
If k& > i, then a recursive call is made on the smaller subarray (eftsiz 1) and with the sameé Finally, if
k < i, then a recursive call is made on the larger subarray (ofisizek) with i replaced byi — k. Deduce
that the expected running time of Ms. Lucky’s algorithm(Oiér log n). (Notice that this running time may
depend upori (in addition ton). In your calculations, you may suitably ignore this depemze.) (20)

Solution Let T'(n) denote the expected running time of Ms. Lucky’s algorithmeararray of size:. Since the pivot is
chosen randomly, each of thepossible valuesl(2, . . ., n) of k is equally likely, that is, of probability /n. If
k = i (a case with probability /»), the algorithm stops after returning the pivot. This cades constant time.
If & > i, arecursive call is made on a subarray of dizel. Finally, if & < 4, the recursive call is on a subarray
of sizen — k. Forn > 2, it then follows that

T(n) < %+%(T(i)‘i‘T(i—F1)+-~-+T(n—1))—|—

(T =i+ D+ T i+2) 4+ T 1)) +en
Here, the ternen on the right side stands for the running time of the partitigrphase. Let us also take
T(1) = 1.
Forn > 3, we then have

nT'(n)—(n—1)Tn-1)<2T'n—-1)—Tn—19)+c(2n—-1) <2T'(n—1) + c(2n — 1),

that is,
T(n) T(n—1) [2n—1
<
n+1 = n +C_n(n—|—1)
T(n—1) [3 1}
= “rC —_
n In+1 n
T(n—2) [1 1 1 1
< -\ % —) (=
= n—1 +C_3<n+1+n> (n+n—1>]
T(n—3) [1 1 1 1 1 1
< — 3 — — | =
= n—2 —|—c_ (n+1+n+n—1) (n+n—1+n—2)}
< e
< i2)—|—c?> L-l—l-i-L—i— -l—l - l—i— ! + ! + -i-1
= 3 n+1 n n-— 4 n n—1 n-—2 3 '

This implies that

T(n) < (";1>T(2)+3c+c(n+1) {3 (Hn—%—%—%) - (Hn—%—%)]

SinceT'(2) is a constant andl,, is O (log n), the expected running time of Ms. Lucky’s algorithmOgn log n).

— Page 7 of 12 —

5. You are given a set aof chords in a circle. Each chord may be viewed as an opaque pfesteng. Your
task is to determine which chords are visible (fully or plyi) from the center. An example is given below.
The dotted chords are the only chords that are not visibledwen partially) from the center.

<X
‘i&

%

— Page 80of 12 —

(@) Propose am)((n + h)logn)-time ray-sweep algorithm for solving this problem, whéres the total
number of intersections of the given chords. Clearly dbégctive events in your algorithm and how they are
handled. Assume that the chords are in general positiohjghao two of them share an endpoint, and no
three of them are concurrent. (20)

Solution A ray emanating from the center of the circle makes a full gwee360° starting from the horizontal right
position. A chord is active at a position of the ray, if the nayersects the chord. We maintain two data
structures as usual.

The sweep ray informatiory’ stores the list of all chords that are currently active. Tlssis kept sorted in
accordance with their distances from the center along tleepimg ray.

Theevent queué) stores the endpoints of the chords, that are yet to be ene@tht) should also store the
intersection of the pair of chords;, C; provided that both are active and are consecutive alonghand has
an intersection point lying after the current location o tlay. () is kept sorted in the increasing order of the
angle from the initial position of the ray.

S is initialized to the list of active chords at the beginnirasjtion of the sweeping ray? is initialized by the
2n endpoints of the chords and the intersection points of canae active chords (provide that the intersection
exists and lies in a future position of the sweeping ray).

The following three events are handled. In all these casesyant is deleted fror) after it is handled.

Enter chord C;: C; is inserted inS. At this point, C; is farthest from the center among all active chords.
However, if C; is theonly active chord, it is reported as visible. If not, et be the second farthest active
chord. The intersection point(Cs, C;) (if it exists and is a future event) is insertedth

Leave chordC;: DeleteC; from S. Just before this deletiod;; was the farthest active chord from the center.
Consequently, nothing else needs to be done.

Intersection of chords C;, C;: Swap the positions of’; andC; in S. Assume thatC; was nearer to the
center tharC'; before this swapping. If’; happened to be the closest active chord from the centerrotife
swapping), ther; is reported as visible. Let, C; be the neighbors of the p4ir;, C; on S (one or both of
these neighbors may be non-existent). The intersectiantgo{C;, C;) andn(C;, C;) are deleted fron®) (if
they were in() at all), and the intersection pointCs, C;) andn(C;, C;) are added t@), if it is appropriate
to do so.

— Page 9of 12 —

(b) Mention relevant data structures that your algorithm usks {he organization of the event queue and
the sweep-ray information). (5)

Solution Q must support arbitrary insertions and deletions, and magrganized as a height-balanced binary search
tree (like an AVL tree).S must support insertions and deletions of maximum, arlyitsaraps of consecutive
elements, and checks for minimum, Sanay again be realized as a height-balanced BST.

(c) Deduce that the running time of your algorithmO$(n + h) log n). (5)

Solution Initialization of @ and.S can be done i®(n log n) time (O(n) insertions in the height-balanced BST's.) There
are exactlyn enter chord events; leave chord events anfd intersection events. Each event involv@él)
insertions and deletions in two BST’s. The BST realizgs of maximum sizen, whereas the BST realizing
Q@ is of maximum sizex + (n — 1), indicating that each tree insertion or deletion can be doigglog n) time.

— Page 10 of 12 —

For rough work. If used for continuation of answers from Pages 1-10, supply appropriate pointers earlier.

— Page 11 of 12 —

For rough work. If used for continuation of answers from Pages 1-10, supply appropriate pointers earlier.

— Page 12 of 12 —

