CS60003 Algorithm Design and Analysis, Autumn 2010–11

Class test 2

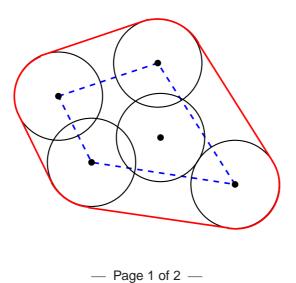
Maximum marks: 20	Time: 08-Nov-2010	Duration: 1 hour
Roll no:	Name:	

[Write your answers in the question paper itself. Be brief and precise. Answer <u>all</u> questions.]

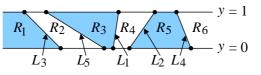
[*Flattest Pair*] You are given n points P₁, P₂,..., P_n in general position in the plane. Your task is to find out the pair P_i, P_j (with i ≠ j) such that the absolute slope of the straight line segment P_iP_j is as small as possible. Propose an O(n log n)-time algorithm to do this. Explain the correctness of your algorithm. (4)

Solution The less the absolute slope of P_iP_j (that is, the angle between P_iP_j and the x-axis) is, the more is the angle between P_iP_j and the y-axis, and conversely. That is, P_iP_j is flattest with respect the x-axis (slope) if and only if P_iP_j is steepest with respect to the y-axis. Thus, we follow an analogous algorithm as used for the steepest-pair problem. We sort the input points with respect to their y-coordinates ($O(n \log n)$ time). Subsequently, we consider only consecutive pairs in this sorted list (O(n) time).

The following figure shows five circles (of the same radius) in the plane. Draw the (boundary of the) smallest convex *region* enclosing these circles. Also indicate the convex hull of the centers (shown as solid dots) of the five circles.



3. You are given n straight line segments L_1, L_2, \ldots, L_n each connecting a point on y = 0 to a point on y = 1. It is given that these lines are non-intersecting with one another. These segments partition the strip between y = 0 and y = 1 into n + 1 regions $R_1, R_2, \ldots, R_{n+1}$. The following figure illustrates a case of n = 5segments. Each region is specified by the left and the right bounding segments. The first and the last regions are unbounded on one side, denoted by -. The six regions (shaded alternately) in the following figure are $R_1 = (-, L_3), R_2 = (L_3, L_5), R_3 = (L_5, L_1), R_4 = (L_1, L_2), R_5 = (L_2, L_4) \text{ and } R_6 = (L_4, -).$



(a) Write an $O(n \log n)$ -time algorithm to output the regions $R_1, R_2, \ldots, R_{n+1}$ from left to right. (4)

Solution Sort the input segments with respect to their left endpoints. Let this sorted list be $L_{i_1}, L_{i_2}, \ldots, L_{i_n}$. Output the regions in the following order: $R_1 = (-, L_{i_1}), R_2 = (L_{i_1}, L_{i_2}), R_3 = (L_{i_2}, L_{i_3}), \dots, R_n = (L_{i_{n-1}}, L_{i_n}),$ and $R_{n+1} = (L_{i_n}, -).$

(b) Describe an $O(n \log n)$ -time algorithm to convert the sorted output of Part (a) to a binary search tree. (4)

Solution The output produced by Part (a) is already sorted. So we should prepare a height-balanced BST (like the AVL tree). Notice that the sorted order also relieves us from making any comparison during insertion and rotation (height balancing) of a new region in the tree.

An alternative is to create the root to store the middle region R_m (where $m = \lfloor (n+1)/2 \rfloor$ or $\lceil (n+1)/2 \rceil$), and then recursively build the left subtree on $R_1, R_2, \ldots, R_{m-1}$ and the right subtree on $R_{m+1}, R_{m+2}, \ldots, R_{n+1}$. This will, in fact, take O(n) time.

(c) You are given a point P in the strip between y = 0 and y = 1, but not on any of the input segments L_i . Describe an $O(\log n)$ -time algorithm to identify the region R_k to which P belongs. Should you use the BST of Part (b), explain how the search for P is exactly carried out.

- (4)
- Solution We use the standard search routine in the height-balanced BST of Part (b). It only needs to be established how a comparison is made in the search path of the tree with respect to P. Suppose that at some point, a tree-node labeled (L_i, L_j) is visited. Treat each of the input segments as directed from bottom to top. If P lies to the right of L_i and to the left of L_j , then P belongs to the region (L_i, L_j) , and the search terminates. Otherwise, if P lies to the left of L_i , the search proceeds to the left subtree of the current node. In the remaining case (P lies to the right of L_j), the search proceeds to the right subtree. Branching decisions (if encountered) for the nodes $(-, L_i)$ and $(L_i, -)$ are analogously handled.