
CS60003 Algorithm Design and Analysis, Autumn 2010–11

Class test 1

Maximum marks: 40 Time: 07–08–09–10 Duration:1 + ǫ hour

Roll no: Name:

[Write your answers in the question paper itself. Be brief andprecise. Answer allquestions.]

In both the following exercises, you solve the same computational problem which goes like this. You are
given n probabilitiesp1, p2, . . . , pn (so eachpi ∈ [0, 1]). You are also given an integerk in the range
0 6 k 6 n (sok = O(n)). Assume thatpi is the probability of obtaining a head in a random toss of a coin
Ci. One toss is made of each of the coinsC1, C2, . . . , Cn in that order. Your task is to propose efficient
algorithms to compute the probabilityP (n, k) of obtaining exactlyk heads in thesen tosses. Of course, in
addition ton andk, the value ofP (n, k) depends also on the probabilitiesp1, p2, . . . , pn. For simplicity, we
use the simplified notationP (n, k) to actually stand forP (n, k, p1, p2, . . . , pn).

Example: Let n = 3, p1 = 1

3
, p2 = 1

2
, p3 = 3

4
, andk = 2. Denote a head byH and a tail byT . All

possible outcomes of three tosses with exactly two heads areHHT , HTH andTHH. The probability to be
calculated is, therefore,P (3, 2) = 1

3
× 1

2
×(1− 3

4
)+ 1

3
×(1− 1

2
)× 3

4
+(1− 1

3
)× 1

2
× 3

4
= 1

24
+ 3

24
+ 6

24
= 10

24
= 5

12
.

Suppose that we do arithmetic on floating-point numbers of a fixed size (likedouble in C), so the cost of
adding, subtracting or multiplying two floating-point values is alwaysΘ(1). In particular, the probabilities
p1, p2, . . . , pn are supplied as floating-point values (not as rational numbers as in the above example).

If k = n/2, there are
(n
n/2

)

> 2n/2 = (
√

2)n outcomes with exactlyk heads. Enumerating all possibilities
leads to fully exponential running time. Better algorithmsare needed to achieve polynomial running times.

1. First, design anO(n2)-time dynamic-programming algorithm to computeP (n, k). Use the valuesP (i, j)
to stand for the probability of obtaining exactlyj heads in the tosses ofC1, C2, . . . , Ci.

(a) For i > 1, expressP (i, j) in terms ofP (i − 1, j − 1) andP (i − 1, j). Give brief justification. (5)

Solution There are two possibilities in thei-th toss:H comes with probabilitypi, andT with probability1 − pi. In
the first case, we require exactlyj − 1 heads in tosses1 throughi − 1, whereas in the second case, we require
exactlyj heads in tosses1 throughi − 1. Therefore,

P (i, j) =

{

piP (i − 1, j − 1) + (1 − pi)P (i − 1, j) if j > 1,
(1 − pi)P (i − 1, j) if j = 0.

(b) Supply conditions to terminate the recursive definition ofP (i, j). Give brief justification. (5)

Solution Basis casei = 0: We haveP (0, j) =
{

1 if j = 0,
0 otherwise.

If you toss zero coins, the only possible outcome for the

number of heads is zero. Sincej 6 i, you may only supply the conditionP (0, 0) = 1.

You may also choose to start the definition fromi = 1, and use the inductive formula of Part 1(a) fori > 2. If

so, we haveP (1, j) =

{

1 − p1 if j = 0,
p1 if j = 1.

Here again, we assumed thatj 6 i.

Whatever your basis case is, you should also supply another terminating condition:P (i, j) = 0 for i < j.

— Page 1 of 6 —

(c) Convert the above formulas to anO(n2)-time dynamic-programming algorithm to calculateP (n, k). (5)

Solution In the following algorithm, we use a two-dimensional arrayP [i, j] with i ranging from0 to n, andj ranging
from 0 to k.

SetP [0, 0] = 1.
For j = 1, 2, . . . , k, setP [0, j] = 0.
For i = 1, 2, . . . , n {

SetP [i, 0] = (1 − pi) × P [i − 1, 0].
For j = 1, 2, . . . , k {

ComputeP [i, j] = pi × P [i − 1, j − 1] + (1 − pi) × P [i − 1, j].
}

}
ReturnP [n, k].

(d) Justify that your algorithm runs inO(n2) time. (5)

Solution Each element of the(n + 1)× (k + 1) matrixP can be computed inO(1) time. So the running time isO(nk).
Sincek = O(n), this running time isO(n2).

— Page 2 of 6 —

2. Now, design anO(n log2 n)-time divide-and-conquer (top-down) algorithm for computing P (n, k). Denote
by Q(i, j, k) the probability of obtaining exactlyk heads in tosses ofCi, Ci+1, . . . , Cj . (We haveP (n, k) =
Q(1, n, k).) Also, denote byFi,j(x) the polynomial

Fi,j(x) =
∑

k>0

Q(i, j, k)xk .

Q(i, j, k) = 0 for k > j − i + 1, soFi,j(x) is indeed a polynomial (not a non-terminating power series). If
we can compute the polynomialFi,j(x), we output its coefficient ofxk asQ(i, j, k). In particular,P (n, k)
is the coefficient ofxk in F1,n(x). So it suffices to computeF1,n(x).

(a) Basis case: Leti ∈ {1, 2, . . . , n}. Write the expression forFi,i(x) with justification. (5)

Solution We haveQ(i, i, 0) = probability ofT in thei-th toss= 1 − pi, Q(i, i, 1) = probability ofH in thei-th toss=
pi, andQ(i, i, k) = probability ofk > 2 heads in thei-th toss= 0. Therefore,Fi,i(x) = (1 − pi) + pix.

(b) Induction: Let1 6 i 6 m < j 6 n. Prove thatFi,j(x) = Fi,m(x)Fm+1,j(x). (5)

Solution The coefficient ofxk in Fi,j(x) is the probability of obtaining exactlyk heads in tossesi throughj, that is,
Q(i, j, k). This probability can be calculated in another way. Letk1 be the number of heads in tossesi through
m, andk2 the number of heads in tossesm + 1 throughj. The probability of this event for a choice of the pair
(k1, k2) is Q(i, m, k1) × Q(m + 1, j, k2). Summing over all pairs(k1, k2) with k1 + k2 = k gives

Q(i, j, k) =
∑

k1+k2=k

Q(i, m, k1) × Q(m + 1, j, k2).

But the right side of this equality is the coefficient ofxk in the polynomial productFi,m(x)Fm+1,j(x).

— Page 3 of 6 —

(c) Propose anO(n log2 n)-time divide-and-conquer algorithm to computeF1,n(x). (5)

Solution The pseudocode for computingFi,j(x) follows. The outermost call should be made withi = 1 andj = n.

If i = j, returnFi,i(x) = (1 − pi) + pix,
else{

Compute the middle indexm = ⌊(i + j)/2⌋.
Recursively computeFi,m(x).
Recursively computeFm+1,j(x).
Return the productFi,m(x)Fm+1,j(x) (use FFT-based polynomial multiplication).

}

(d) Prove that your algorithm in Part 2(c) runs inO(n log2 n) time. (You may use without proof the result
that the solution of the recurrenceT (n) = 2T (n/2) + O(n log n) is T (n) = O(n log2 n). For a proof, look
at the solution of Exercise 1 in the Mid-Semester Test of Autumn 2008.) (5)

Solution The divide step takes onlyO(1) time. Thecombine step can be completed inO(n log n) time using FFT-
based polynomial multiplication, since all polynomialsFi,j(x) involved in the computation are of degrees
6 j − i + 1 6 n.

(Remark: Never ever underestimate the power of top-down programming.)

— Page 4 of 6 —

ROUGH WORK

[You may also use this space for continuation of answers. Give pointers from Pages 1–4.]

— Page 5 of 6 —

ROUGH WORK

[You may also use this space for continuation of answers. Give pointers from Pages 1–4.]

— Page 6 of 6 —

