1. Suppose that the running time $T(n)$ of an algorithm on an input of size n satisfies

$$
\begin{equation*}
T(n)=T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+c n \log n \tag{10}
\end{equation*}
$$

for all $n \geqslant 2$, where c is a positive constant. Deduce that $T(n)=\Theta\left(n \log ^{2} n\right)$.

Solution Step 1: First show, by induction on n, that $T(n)$ is an increasing function of n. This implies that $T\left(2^{t}\right) \leqslant$ $T(n) \leqslant T\left(2^{t+1}\right)$, where $2^{t} \leqslant n<2^{t+1}$.

Step 2: Solve the recurrence for $n=2^{t}$.

$$
\begin{aligned}
T\left(2^{t}\right) & =2 T\left(2^{t-1}\right)+c^{\prime} t 2^{t} \quad\left(\text { where } c^{\prime}=c \log 2>0 \text { is a constant }\right) \\
& =2\left[2 T\left(2^{t-2}\right)+c^{\prime}(t-1) 2^{t-1}\right]+c^{\prime} t 2^{t} \\
& =2^{2} T\left(2^{t-2}\right)+c^{\prime}[(t-1)+t] 2^{t} \\
& =2^{2}\left[2 T\left(2^{t-3}\right)+c^{\prime}(t-2) 2^{t-2}\right]+c^{\prime}[(t-1)+t] 2^{t} \\
& =2^{3} T\left(2^{t-3}\right)+c^{\prime}[(t-2)+(t-1)+t] 2^{t} \\
& \cdots \\
& =2^{t} T(1)+c^{\prime}[1+2+\cdots+(t-2)+(t-1)+t] 2^{t} \\
& =d 2^{t}+c^{\prime} t(t+1) 2^{t-1} \quad(\text { where } d=T(1) \text { is a positive constant) } \\
& =\left(c^{\prime} t^{2}+c^{\prime} t+2 d\right) 2^{t-1} . \quad
\end{aligned}
$$

Step 3: Upper bound

Consider n in the range $2^{t} \leqslant n<2^{t+1}$. We have

$$
T(n) \leqslant T\left(2^{t+1}\right)=\left(c^{\prime}(t+1)^{2}+c^{\prime}(t+1)+2 d\right) 2^{t} \leqslant\left(c^{\prime}(\lg n+1)^{2}+c^{\prime}(\lg n+1)+2 d\right) n
$$

It follows that $T(n)=\mathrm{O}\left(n \log ^{2} n\right)$.

Step 4: Lower bound

For n satisfying $2^{t} \leqslant n<2^{t+1}$, we have

$$
T(n) \geqslant T\left(2^{t}\right)=\left(c^{\prime} t^{2}+c^{\prime} t+2 d\right) 2^{t-1} \geqslant\left(c^{\prime}(\lg n-1)^{2}+c^{\prime}(\lg n-1)+2 d\right) \frac{n}{4}
$$

Therefore, $T(n)=\Omega\left(n \log ^{2} n\right)$.

Let M denote the maximum of these absolute differences, and m the minimum of them. The problem of determining M (resp. m) is called the maximum-difference (resp. minimum-difference) problem.
(a) Design an $\mathrm{O}(n)$-time algorithm to compute M.

Solution The algorithm:

First, obtain the minimum element a_{s} in the array.
Then, obtain the maximum element a_{t} in the array.
Finally, return $a_{t}-a_{s}$.
Correctness: Assume $a_{i} \geqslant a_{j}$. Then, $\left|a_{i}-a_{j}\right|=a_{i}-a_{j}$ is maximized, when a_{i} is as large as possible and a_{j} is as small as possible.
Running time: The minimum of an array of n elements can be found in $\mathrm{O}(n)$ time. Similar is the case for the maximum.
(b) Design an $\mathrm{O}(n \log n)$-time algorithm to compute m.

Merge sort the array A in ascending order.
Let $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{n}}$ be the sorted version of A.
Compute and return the minimum of $a_{i_{2}}-a_{i_{1}}, a_{i_{3}}-a_{i_{2}}, \ldots, a_{i_{n}}-a_{i_{n-1}}$.
Correctness: The minimum difference $\left|a_{i}-a_{j}\right|$ is achieved when a_{i} and a_{j} are consecutive in the sorted version of A.

Running time: Merge sorting an array of size n requires $\mathrm{O}(n \log n)$ time. Computing the minimum of $a_{i_{j}}-a_{i_{j-1}}$ over $j=2,3, \ldots, n$ takes $\mathrm{O}(n)$ time.

Element uniqueness: Determine whether an array of n integers contains duplicates.
It can be proved (using techniques other than reduction) that element uniqueness has a lower bound of $\Omega(n \log n)$ (under reasonable models of computation). Using this result, prove that the algorithm of Part (b) is optimal.

Solution We reduce element uniqueness to minimum difference as follows.
Let A be the input array for element uniqueness.
Pass A itself to a minimum difference algorithm.
If the minimum difference algorithm returns 0 , return "elements are not unique", else return "elements are unique".

So element uniqueness \leqslant minimum difference. Since element uniqueness has a lower bound of $\Omega(n \log n)$ and the above reduction algorithm runs in $\mathrm{O}(n)$ (that is, $\mathrm{o}(n \log n)$) time, it follows that any algorithm for minimum difference must run in $\Omega(n \log n)$ time (in the worst case).
3. We often need to compute the convex hull (smallest enclosing convex polygon) of general geometric objects.
(a) Design an $\mathrm{O}(n \log n)$-time algorithm to compute the convex hull of n triangles in the plane.

Solution The algorithm: Let P_{i}, Q_{i}, R_{i} be the vertices of the i-th triangle. Compute the convex hull of the $3 n$ points $P_{i}, Q_{i}, R_{i}, i=1,2, \ldots, n$. Output this convex hull.

Correctness: Since a triangle is a convex polygon, it is immediate that a convex region encloses a triangle if and only if it encloses the three vertices of the triangle.

Running time: Use an $\mathrm{O}(n \log n)$-time algorithm (like sorting followed by Graham's scan or Preparata and Hong's divide-and-conquer algorithm) for the computation of the convex hull. Here, we have $3 n$ points. So the running time is $\mathrm{O}(3 n \log (3 n))$ which is again $\mathrm{O}(n \log n)$.

Solution The algorithm: Let $P_{i}, Q_{i}, R_{i}, S_{i}$ be the vertices of the i-th quadrilateral. Compute the convex hull of the $4 n$ points $P_{i}, Q_{i}, R_{i}, S_{i}, i=1,2, \ldots, n$. Output this convex hull.
Correctness: Any simple quadrilateral can be triangulated by two triangles. For example, let $P Q R S$ be a quadrilateral. Since the sum of the internal angles of any simple quadrilateral is 360°, a quadrilateral cannot have two or more internal angles $>180^{\circ}$. If $P Q R S$ contains such an angle, we rename the vertices (if necessary) and assume that the internal angle at P is $>180^{\circ}$. But then, the triangles $P Q R$ and $P R S$ constitute a triangulation of $P Q R S$.

Running time: Use an $\mathrm{O}(n \log n)$-time algorithm (like sorting followed by Graham's scan or Preparata and Hong's divide-and-conquer algorithm) for the computation of the convex hull. Here, we have $4 n$ points. So the running time is $\mathrm{O}(4 n \log (4 n))$ which is again $\mathrm{O}(n \log n)$.
(c) What is the smallest convex polygon enclosing a circle?

Solution No such polygon exists. For any polygon enclosing a circle, we can find a smaller polygon (with more edges) that encloses the circle.
substring of S and T. Design an $\mathrm{O}(m n)$-time dynamic programming algorithm for solving this problem.
(Hint: Consider the longest common suffix (or its length) $E_{i, j}$ of $S[0 \ldots i]$ and $T[0 \ldots j]$.)
(Remark: This problem can be solved in $\mathrm{O}(m+n)$ time by using sophisticated data structures like generalized suffix trees.)

Solution The algorithm: We use an auxiliary two-dimensional array E of size $m \times n$. The variable maxlen stores the maximum common substring found so far, whereas the variable endpos stores the index of the last character of this common substring in the string S.

Initialize maxlen $=0$.

```
/* Initialize the first column */
for \(i=0,1, \ldots, m-1\)
    if ( \(A[i]\) equals \(B[0]\) )
        set \(E[i][0]=1\),
        maxlen \(=1\), and
        endpos \(=i\).
    else set \(E[i][0]=0\).
/* Initialize the first row */
for \(j=1,2, \ldots, n-1\)
    if ( \(A[0]\) equals \(B[j]\) )
        set \(E[0][j]=1\),
        endpos \(=0\), and
        maxlen \(=1\).
    else set \(E[0][j]=0\).
/* Update the remaining \(E[i][j]\) values in the row-major order */
for \(i=1,2, \ldots, m-1\)
    for \(j=1,2, \ldots, n-1\)
        if \((A[i]\) equals \(B[j])\) set \(E[i][j]=E[i-1][j-1]+1\), else set \(E[i][j]=0\).
        if \((E[i][j]>\) maxlen \()\)
            set maxlen \(=E[i][j]\).
            set endpos \(=i\).
```

/* Return the longest common substring */
return S [endpos - maxlen +1 . . endpos].

Correctness: The length $E_{i, j}$ of the longest common suffix of $S[0 \ldots i]$ and $T[0 \ldots j]$ satisfies the recursive definition

$$
E_{i, j}= \begin{cases}E_{i-1, j-1}+1 & \text { if } S[i]=T[j] \\ 0 & \text { otherwise }\end{cases}
$$

as long as $i \geqslant 1$ and $j \geqslant 1$. The boundary conditions are

$$
E_{i, 0}=\left\{\begin{array}{ll}
1 & \text { if } S[i]=T[0] \\
0 & \text { otherwise, }
\end{array} \quad \text { and } \quad E_{0, j}= \begin{cases}1 & \text { if } S[0]=T[j] \\
0 & \text { otherwise. }\end{cases}\right.
$$

The order, in which the values $E_{i, j}$ are computed above, ensures that the value of $E_{i-1, j-1}$ is already available during the computation of $E_{i, j}$ for $i \geqslant 1$ and $j \geqslant 1$.
Running time: Initialization of the first column requires $\Theta(m)$ time. Initialization of the first row requires $\Theta(n)$ time. The subsequent doubly nested loop runs $(m-1)(n-1)$ times with each iteration taking $\Theta(1)$ time. The total running time is, therefore, $\Theta(m n)$.

