Class test 1

Roll no: \qquad Name:
[Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

1. Let A be an array of n integers $a_{0}, a_{1}, \ldots, a_{n-1}$ (negative integers are allowed). Denote, by $A[i \ldots j]$, the subarray $a_{i}, a_{i+1}, \ldots, a_{j}$ for $i \leqslant j$. Also let $S_{i, j}$ denote the sum $a_{i}+a_{i+1}+\cdots+a_{j}$. Your task is to find out the maximum value of $S_{i, j}$ over all allowed indices i, j. Call this maximum value S. For example, for the array $1,3,-7,2,-1,5,-1,-2,4,-6,3$, this maximum sum is $S=S_{3,8}=2+(-1)+5+(-1)+(-2)+4=$ 7. This example illustrates that the maximum sum may come from a subarray containing negative elements.

Let us also allow $j<i$ in the notation $A[i \ldots j]$. In this case, $A[i \ldots j]$ denotes the empty subarray (that is, a subarray that ends before it starts) with sum $S_{i, j}=0$. Indeed, if all the elements of A are negative, then one returns 0 as the maximum subarray sum.
(a) Design a naive algorithm that computes $S_{i, j}$ for all the pairs i, j with $0 \leqslant i \leqslant j \leqslant n-1$, and obtains the maximum of these computed sums. Your program must run in $\mathrm{O}\left(n^{2}\right)$ time. Write a pseudocode for your algorithm. Also supply an argument that your algorithm has $\mathrm{O}\left(n^{2}\right)$ running time.

```
Solution Initialize S=0.
    For i=0,1,\ldots,n-1 {
        Initialize temporary sum T=0.
        For j = i,i+1,\ldots,n-1 {
            Update T=T+\mp@subsup{a}{j}{}}\mathrm{ .
            if T>S, then S=T.
        }
    }
    Output S.
```

The above algorithm computes $S_{i, j}$ in a doubly nested loop. The inner loop is based upon the fact that $S_{i, i-1}=0$ and $S_{i, j}=S_{i, j-1}+a_{j}$ for $j \geqslant i$. Each iteration of the inner loop takes O(1) running time. The total number of iterations of the inner loop is $n+(n-1)+\cdots+2+1=n(n-1) / 2$, which is $\Theta\left(n^{2}\right)$.

Our plan is to arrive at an $\mathrm{O}(n)$-time dynamic-programming algorithm to solve the maximum subarray sum problem.
(b) For $j \geqslant 0$, define E_{j} to be the maximum of all the values $S_{i, j}$ for $i=0,1, \ldots, j$. Thus, E_{j} represents the maximum subarray sum over all subarrays ending at index j. If no such subarray has positive sum, we take $E_{j}=0$ (this corresponds to the empty suffix). We also take $E_{-1}=0$. Prove that $E_{j}=\max \left(0, E_{j-1}+a_{j}\right)$ for $j \geqslant 0$.

Solution A maximum-sum suffix of $A[0 \ldots j]$ is obtained by appending a_{j} to a maximum-sum suffix of $A[0 \ldots j-1]$. However, if $a_{j}<0$, we may have $E_{j-1}+a_{j}<0$. In this case, $A[0 \ldots j]$ does not have a non-empty suffix with positive sum.
(c) Let $S_{-1}=0$. For $j \geqslant 0$, define $S_{j}=\max _{i^{\prime}, j^{\prime}}\left(\left\{S_{i^{\prime}, j^{\prime}} \mid 0 \leqslant i^{\prime} \leqslant j^{\prime} \leqslant j\right\} \cup\{0\}\right)$. Our task is to compute $S_{n-1}=S$. Prove that $S_{j}=\max \left(S_{j-1}, E_{j}\right)$ for $j \geqslant 0$.

Solution When a new element a_{j} is considered, the maximum-sum subarray $A\left[i^{\prime} \ldots j^{\prime}\right]$ of $A[0 \ldots j]$ is to be searched from two pools - the first corresponding to $j^{\prime}<j$ and the second to $j^{\prime}=j$. The first case refers to a maximumsum subarray of $A[0 \ldots j-1]$, whereas the second case refers to subarrays of $A[0 \ldots j]$ that include a_{j} (that is, suffixes of $A[0 \ldots j]$).
(d) Describe an $\mathrm{O}(n)$-time algorithm for the computation of the maximum S. Write a pseudocode for your algorithm and also justify that your algorithm runs in linear time. Inefficient management of extra space will be penalized.

```
Solution Initialize S=0 and E=0.
For j=0,1,2,\ldots,n-1 {
        First, update E as E = max (0, E+ aj).
        Then, update S as S=max(S,E).
    }
    Output S.
```

There are exactly n interations of the loop, and each iteration requires only a constant amount of time.
(e) Suppose that the minimum sum $s=\min _{i, j}\left(\left\{S_{i, j} \mid 0 \leqslant i \leqslant j \leqslant n-1\right\} \cup\{0\}\right)$ is to be computed. Propose an $\mathrm{O}(n)$-time algorithm for this minimum subarray sum problem.
(f) Modify the algorithm of Part (d) so that the indices i, j, for which $S_{i, j}$ is maximized, are computed (along with the maximum sum S). Your modification should continue to run in $\mathrm{O}(n)$ time.

Solution We plan to store the indices i^{\prime}, j^{\prime} corresponding to the maximum-sum subarray $A\left[i^{\prime} \ldots j^{\prime}\right]$ of $A[0 \ldots j]$. Moreover, we use the index k to store the maximum-sum suffix $A[k \ldots j]$ of $A[0 \ldots j]$. If this suffix is empty, we take $k=j+1$.
Initialize $S=0$ and $E=0$.
Initialize the indices $i^{\prime}=0, j^{\prime}=-1$ and $k=0$.
For $j=0,1,2, \ldots, n-1$ \{
First, update E and k as follows:
Compute $T=E+a_{j}$.
If $T<0$, update $E=0$ and $k=j+1$,
else update $E=T$ (k remains the same).
Then, update S and i^{\prime}, j^{\prime} as follows: If $E>S$, update $S=E, i^{\prime}=k$ and $j^{\prime}=j$.
(Nothing needs to be done if $E \leqslant S$.)
\}
Output $S, i^{\prime}, j^{\prime}$.
This algorithm is the same as that in Part (d) with the additional overhead of updating the indices I, J, K. This updating takes $\mathrm{O}(1)$ time in each iteration of the loop, so the running time of the algorithm remains $\mathrm{O}(n)$.

