\qquad Name:
[Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

1. Let A be an array of n integers $a_{0}, a_{1}, \ldots, a_{n-1}$ (negative integers are allowed). Denote, by $A[i \ldots j]$, the subarray $a_{i}, a_{i+1}, \ldots, a_{j}$ for $i \leqslant j$. Also let $S_{i, j}$ denote the sum $a_{i}+a_{i+1}+\cdots+a_{j}$. Your task is to find out the maximum value of $S_{i, j}$ over all allowed indices i, j. Call this maximum value S. For example, for the array $1,3,-7,2,-1,5,-1,-2,4,-6,3$, this maximum sum is $S=S_{3,8}=2+(-1)+5+(-1)+(-2)+4=$ 7. This example illustrates that the maximum sum may come from a subarray containing negative elements.

Let us also allow $j<i$ in the notation $A[i \ldots j]$. In this case, $A[i \ldots j]$ denotes the empty subarray (that is, a subarray that ends before it starts) with sum $S_{i, j}=0$. Indeed, if all the elements of A are negative, then one returns 0 as the maximum subarray sum.
(a) Design a naive algorithm that computes $S_{i, j}$ for all the pairs i, j with $0 \leqslant i \leqslant j \leqslant n-1$, and obtains the maximum of these computed sums. Your program must run in $\mathrm{O}\left(n^{2}\right)$ time. Write a pseudocode for your algorithm. Also supply an argument that your algorithm has $\mathrm{O}\left(n^{2}\right)$ running time.

Our plan is to arrive at an $\mathrm{O}(n)$-time dynamic-programming algorithm to solve the maximum subarray sum problem.
(b) For $j \geqslant 0$, define E_{j} to be the maximum of all the values $S_{i, j}$ for $i=0,1, \ldots, j$. Thus, E_{j} represents the maximum subarray sum over all subarrays ending at index j. If no such subarray has positive sum, we take $E_{j}=0$ (this corresponds to the empty suffix). We also take $E_{-1}=0$. Prove that $E_{j}=\max \left(0, E_{j-1}+a_{j}\right)$ for $j \geqslant 0$.
(c) Let $S_{-1}=0$. For $j \geqslant 0$, define $S_{j}=\max _{i^{\prime}, j^{\prime}}\left(\left\{S_{i^{\prime}, j^{\prime}} \mid 0 \leqslant i^{\prime} \leqslant j^{\prime} \leqslant j\right\} \cup\{0\}\right)$. Our task is to compute $S_{n-1}=S$. Prove that $S_{j}=\max \left(S_{j-1}, E_{j}\right)$ for $j \geqslant 0$.
(d) Describe an $\mathrm{O}(n)$-time algorithm for the computation of the maximum S. Write a pseudocode for your algorithm and also justify that your algorithm runs in linear time. Inefficient management of extra space will be penalized.
(e) Suppose that the minimum sum $s=\min _{i, j}\left(\left\{S_{i, j} \mid 0 \leqslant i \leqslant j \leqslant n-1\right\} \cup\{0\}\right)$ is to be computed. Propose an $\mathrm{O}(n)$-time algorithm for this minimum subarray sum problem.
(f) Modify the algorithm of Part (d) so that the indices i, j, for which $S_{i, j}$ is maximized, are computed (along with the maximum sum S). Your modification should continue to run in $\mathrm{O}(n)$ time.

