
CS29206 Systems Programming Laboratory, Spring 2022–2023

Class Test 2

13–April–2023 03:00pm–04:00pm Maximum marks: 60

Roll no: Name:

[

Write your answers in the question paper itself. Be brief and precise. Answer all questions.
]

1. (a) Consider a text file input.txt, containing alphanumeric text along with special characters. Write a single grep

command which matches one (or both) of the following two kinds of strings.

(i) Strings starting with a lower-case letter at the beginning of the line, followed by any number of alphanumeric

characters, and ending with a lower-case vowel (not necessarily at the end of the line),

(ii) Strings starting with an upper-case letter (not necessarily at the beginning of a line), followed by any number of

characters (alphanumeric or special), and ending with a lower-case letter at the end of the line. (5)

grep -e ’^[a-z][a-zA-Z0-9]*[aeiou]’ -e ’[A-Z].*[a-z]$’ input.txt

(b) Write an executable gawk script which reads a string S as input from the user (use getline, do not read from

a database), containing multiple fields delimited by ; as the separator. Each field of S contains an alphanumeric

string. Assume that S contains no spaces. For instance, the user may enter One;two;three;67tt7;852 as S.

Your script should print Success if the first or the last field of the input S is a numeric string (an integer in decimal

notation, without any + or - sign); otherwise it should print Failure. Write a function compare() with suitable

argument(s) (say, the string S) for solving this matching problem. However, the script should read the string S and

print the message (Success or Failure) outside the function. Note that twelve and 5six7 are not numeric strings,

whereas 12 and 567 are. Also assume that the empty string is not a numeric string. (10)

#!/usr/bin/gawk -f

function compare (s)

{

n = split(s, a, ";");

if ((a[1] ˜ /ˆ[0-9][0-9]*$/) || (a[n] ˜ /ˆ[0-9][0-9]*$/))

status = "Success"

}

BEGIN {

status = "Failure"

getline S < "-"

compare(S)

print status

}

— Page 1 of 4 —

2. (a) Consider entries in a telephone directory with filename directory.txt as follows.

+123-334-889-778

+880-1855-456-907

+9-7777-38644-808

+123-443-998-887

Write a gawk command (not a script) which takes directory.txt as a command-line argument, and the prints

only the country codes in all the lines, as shown below. The same country code may be printed multiple times.

+123

+880

+9

+123 (3)

gawk -F- ’{ print $1 }’ directory.txt

(b) Consider a student dossier file which contains student names in a class

and their respective native states. A dossier file from Prof. Artim is

given to the right. The file starts with a header line, and is followed

by actual student data. The name and the state fields may contain

spaces, and are separated by a comma (no space just before or just

after the comma). The header may be different in different files. For

example, Prof. Foostein’s file has the header Name,Bundesland,

whereas Prof. Barbouki’s file has the header Nom,Région.

Apply the notion of associative arrays, and write an executable gawk

script to print all the states of the students appearing in a given

dossier file. Each state appearing in the file (like West Bengal in

Prof. Artim’s file) should be printed only once, and the state header

(like State or Bundesland or Région) must not be printed. There

is no need to write the student names against every state.

Student Name,State

Bar Yash Foorole,Maharashtra

Foolan Barik,West Bengal

Rabin,Bihar

Swetha V V V Y,Karnataka

Naveen Praveen Reddy,Telangana

Samir Sengupta,West Bengal

Sundar F. B.,Uttar Pradesh

Rab Oof,West Bengal

Lalitha,Karnataka

Lolita,West Bengal

Venu Murali Vamshi,Tamil Nadu

Barendra Salam,Manipur

(12)

In the code given below, the associative array state[] is accessed against every state found in the dossier file. If you choose, you

can set that entry to anything like 0 or 1 or "found".

#!/usr/bin/gawk -f

BEGIN { FS = "," }

{ if (NR > 1) state[$2] }

END { for (s in state) print s }

— Page 2 of 4 —

3. (4 × 5)(a) Write a sequence of bash commands in a script,

that reads (from the terminal) two parts of the user’s

name (may contain spaces) in variables firstname

and lastname, and then sets and prints a variable

fullname. Write your answer below the following

sample I/O. The quotes shown should be printed.

First name: Foo Bar

Last name: Basu Roy Chowdhury

Full name: "Foo Bar Basu Roy Chowdhury"

echo -n "First name: "

read firstname

echo -n "Last name: "

read lastname

fullname="$firstname $lastname"

echo "Full name: \"$fullname\""

(b) What will be printed by the following bash code

snippet? Write your answer below the snippet.

declare -ai P=(2 3 5 7)

P[5]=11

echo ${P[3]}

echo ${P[@]}

echo ${!P[@]}

echo ${#P[@]}

7

2 3 5 7 11

0 1 2 3 5

5

(c) Suppose that the bash variable pattern stores a regular expression. You want to search for this regular

expression in a file myfile.txt. You can use the following command:

grep -e "$pattern" myfile.txt

Two other methods for the same search are sketched below. The first method uses pipe |, and the second method

uses string redirection <<<. Fill in the blanks (write nowhere else) to complete the commands of these alternative

methods. In each blank, use a standard Unix command to print the entire file myfile.txt to stdout.

cat myfile.txt | grep -e "$pattern"

grep -e "$pattern" <<< ‘cat myfile.txt‘

(d) What will be printed by the following bash code

snippet? Write your answer below the snippet.

x=15; y=25

function Fxy () {

echo "x = $x, y = $y"

}

function F () {

Fxy

y=30; local x=10 y=20

Fxy

}

F

Fxy

x = 15, y = 25

x = 10, y = 20

x = 15, y = 30

(e) What will be printed by the following bash code

snippet? Write your answer below the snippet.

function f () {

echo echo Hello, World!

}

g=‘f‘

echo "$g"

echo ’$g’

echo ‘$g‘

‘echo $g‘

echo Hello, World!

$g

Hello, World!

Hello, World!

— Page 3 of 4 —

4. Write an executable bash script to do the following task. The script uses a directory name dir. If that name is

supplied by the user as the first command-line parameter, dir is set to that parameter, otherwise dir is set to the

current directory. The script then checks whether dir is a directory and has read permission. If not, it exits with some

error status. Otherwise, it proceeds to create a file myfiles.zip in the current directory as outlined below (assume

that you have permission to write in the current directory). The script checks whether myfiles.zip is already

present in the current directory, and if that is the case, the script deletes the file. After that, the zip file is created using

the following command, where file1, file2, file3, . . . are all of the regular files in dir having read permission.

zip myfiles.zip file1 file2 file3 ...

Before invoking the command, the script makes a listing of all the files in dir, and identifies (and stores) the names of

all the regular files in dir with read permission. If there is no such file, the zip command is not invoked. Otherwise,

myfiles.zip is created using the above command. Write the executable bash script below to perform this task.

Note that you should call zip only once (provided that there are file(s) in dir to zip). You must not incrementally

add file(s) to the zip archive. (10)

#!/bin/bash

if [$# -eq 0]; then dir="."; else dir="$1"; fi

if [! -d $dir]; then echo "$dir is not a directory"; exit 1; fi

if [! -r $dir]; then echo "$dir is not readable"; exit 2; fi

echo "Going to zip files in the directory \"$dir\""

zipfile=myfiles.zip

if [-e $zipfile]; then rm $zipfile; fi

flist=""

declare -i n=0

for file in ‘ls $dir‘; do

if [-f "$dir/$file"] && [-r "$dir/$file"]; then

flist+=" $dir/$file"

n=$((n+1))

fi

done

if [$n -eq 0]; then

echo "There are no files to zip"

else

echo "Going to zip the following $n files"

echo $flist

zip $zipfile $flist

fi

— Page 4 of 4 —

