
Systems Programming Laboratory, Spring 2022

Programming bash

Abhijit Das

Arobinda Gupta

Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur

March 24, 2022

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Why shell programming?

• You can write C/C++/Java/Python/. . . programs for every doable thing.

• Precompiled libraries make your job easier.

• C programs are naturally good for number crunching, data structuring, . . .

• Specially written programs can do special tasks with little programming efforts.

• grep specializes in pattern matching.

• gawk specializes in text data processing.

• A shell like bash specializes in many types of file handling.

• C programs for these special jobs are often huge and difficult to write.

• A shell script is an all-in-one solution to simplify a programmer’s life.

• A shell itself does whatever it is naturally good at.

• For special tasks, it can call the specialists with little effort.

• Shell scripts are very useful for system administration.

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

What have you seen, and what next?

• What you already know:

• How bash can execute commands.

• How bash can manage variables and arrays.

• How bash can define functions.

• How bash can do arithmetic operations using $((...)).

• How bash can store the complete outputs (not the return values) produced by other

programs using back-quotes or $(...).

• How bash can do pattern-based substitutions in command lines.

• What remains for you to know is the control structures.

• Condition checking

• Conditional execution

• Loops

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Introductory concepts

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Your first shell script

• First line: The hash-bang or she-bang notation specifies the interpreter.

• Then, write the shell commands and directives.

• Add execute permission to the shell script.

• Run the script.

File hello.sh
#!/bin/bash

echo "Hello, world!"

Running hello.sh

$ chmod 755 hello.sh

$./hello.sh

Hello, world!

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

An interactive shell script to list all files of an extension

The script findall.sh

#!/bin/bash

echo -n "*** Enter an extension (without the dot): "

read extn

echo "*** Okay, finding all files in your home area with extension $extn"

ls -R ~ | grep "\.$extn$"

echo "*** That’s all you have. Bye."

Running findall.sh

$ chmod a+x findall.sh

$./findall.sh

*** Enter an extension (without the dot): tif

*** Okay, finding all files in your home area with extension tif

centralimage-1500.tif

formulas-hires.tif

frontcover-hires.tif

Crypto.tif

left.tif

dataconv2.tif

ICDCN_DD.tif

ICDCN_LNCS.tif

ICDCN_REGN.tif

lncs-logo_4c.tif

*** That’s all you have. Bye.

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

You can supply regular expressions in extension

$./findall.sh

*** Enter an extension (without the dot): [A-Z]

*** Okay, finding all files in your home area with extension [A-Z]

LABTEST.C

gf2n.S

test.S

template17.Z

*** That’s all you have. Bye.

$./findall.sh

*** Enter an extension (without the dot): [a-z]*[^a-zA-Z]

*** Okay, finding all files in your home area with extension [a-z]*[^a-zA-Z]

crypto.toc7

cfp.html~

bwedit3.0

words.2

2021-11-15.mp4

MontgomeryLadder.gp~

Numberlink.mp3

*** That’s all you have. Bye.

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Running another interpreter

rungawk.sh

#!/bin/bash

echo -n "Enter dinosaur database file: "

read dbfile

gawk ’

BEGIN { FS=":"; print "Theropod dinosaurs" }

{

if ($2 ~ "theropod") { print "\t" $1; n++ }

}

END { print n " theropods found" }

’ $dbfile

Note:

• $1 and $2 have different meanings in bash and gawk.

• Since the commands of gawk are within single quotes, bash does not expand $1 and $2.

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Output of rungawk.sh

$./rungawk.sh

Enter dinosaur database file: ../awk/dinosaurs.txt

Theropod dinosaurs

Albertosaurus

Allosaurus

Archaeopteryx

Baryonyx

Carcharodontosaurus

Carnotaurus

Ceratosaurus

Chindesaurus

Coelophysis

Deinocheirus

Deinonychus

Dilophosaurus

Giganotosaurus

Indosuchus

Majungasaurus

Megalosaurus

Microraptor

Monolophosaurus

Oviraptor

Sinraptor

Spinosaurus

Tarbosaurus

Tyrannosaurus

Utahraptor

Velociraptor

25 theropods found

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Using here documents

rungawkfile.sh

#!/bin/bash

echo -n "Enter dinosaur database file: "

read dbfile

cat << EOP > thero.awk

BEGIN { FS=":"; print "Theropod dinosaurs" }

{

if (\$2 ~ "theropod") { print "\t" \$1; n++ }

}

END { print n " theropods found" }

EOP

gawk -f thero.awk $dbfile

Notes:

• echo (in place of cat) does not work here. Why?

• Here documents expand the variables. To prevent this from happening, you should

use \$1 and \$2.

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Output of rungawkfile.sh

$./rungawkfile.sh

Enter dinosaur database file: ../awk/dinosaurs.txt

Theropod dinosaurs

Albertosaurus

Allosaurus

Archaeopteryx

Baryonyx

Carcharodontosaurus

Carnotaurus

Ceratosaurus

Chindesaurus

Coelophysis

Deinocheirus

Deinonychus

Dilophosaurus

Giganotosaurus

Indosuchus

Majungasaurus

Megalosaurus

Microraptor

Monolophosaurus

Oviraptor

Sinraptor

Spinosaurus

Tarbosaurus

Tyrannosaurus

Utahraptor

Velociraptor

25 theropods found

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Storing the output of another program in a string

rungawkstore.sh

#!/bin/bash

echo -n "Enter dinosaur database file: "

read dbfile

cat << EOP > thero.awk

BEGIN { FS=":"; print "Theropod dinosaurs" }

{

if (\$2 ~ "theropod") { print "\t" \$1; n++ }

}

END { print n " theropods found" }

EOP

gawkop=‘gawk -f thero.awk $dbfile‘

echo "gawk produced the following output..."

echo $gawkop

Running the script

$./rungawkstore.sh

Enter dinosaur database file: ../awk/dinosaurs.txt

gawk produced the following output...

Theropod dinosaurs Albertosaurus Allosaurus Archaeopteryx Baryonyx Carcharodontosaurus Carnotaurus

Ceratosaurus Chindesaurus Coelophysis Deinocheirus Deinonychus Dilophosaurus Giganotosaurus Indosuchus

Majungasaurus Megalosaurus Microraptor Monolophosaurus Oviraptor Sinraptor Spinosaurus Tarbosaurus

Tyrannosaurus Utahraptor Velociraptor 25 theropods found

$

Note: Use echo "$gawkop" to see the correctly formatted output.

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Processing the stored output

rungawkgrep.sh prints only the theropod dinosaur names not ending with s

#!/bin/bash

echo -n "Enter dinosaur database file: "

read dbfile

cat << EOP > thero.awk

BEGIN { FS=":"; print "Theropod dinosaurs" }

{

if (\$2 ~ "theropod") { print "\t" \$1; n++ }

}

END { print n " theropods found" }

EOP

gawkop=‘gawk -f thero.awk $dbfile‘

echo "Output of gawk is filtered through grep..."

echo "$gawkop" | grep "^[^a-zA-Z0-9].*[^s]$" -

Running the script

$./rungawkgrep.sh

Enter dinosaur database file: ../awk/dinosaurs.txt

Output of gawk is filtered through grep...

Archaeopteryx

Baryonyx

Microraptor

Oviraptor

Sinraptor

Utahraptor

Velociraptor

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Return modes revisited

• Every command returns a value.

• Your shell functions also run as commands.

• The return value is to be treated as a status.

• The status is usually a small integer in the range [0,255].

• For returning other things (larger integers, floating-point values, and strings), you

have to use other mechanisms.

• Status is to be treated as status, not as value.

• Use one of the following mechanisms.

• Returning by setting global variable(s).

• Returning by echoing.

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Return values through global variables

hypo1.sh

#!/bin/bash

function hypotenuse () {

local a=$1;

local b=$2;

a=$((a*a))

b=$((b*b))

csqr=$((a+b))

c=‘echo "scale=10; sqrt($csqr)" | bc‘

}

echo -n "Enter a and b: "

read a b

hypotenuse $a $b

echo "a = $a, b = $b, c = $c, csqr = $csqr"

Running the script

$./hypo1.sh

Enter a and b: 5 6

a = 5, b = 6, c = 7.8102496759, csqr = 61

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Return values by echoing

hypo2.sh

#!/bin/bash

function hypotenuse () {

local a=$1;

local b=$2;

a=$((a*a))

b=$((b*b))

csqr=$((a+b))

echo ‘echo "scale=10; sqrt($csqr)" | bc‘

}

echo -n "Enter a and b: "

read a b

c=‘hypotenuse $a $b‘

echo "a = $a, b = $b, c = $c"

Running the script

$./hypo2.sh

Enter a and b: 5 6

a = 5, b = 6, c = 7.8102496759

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

You have a price to pay

hypo3.sh

#!/bin/bash

function hypotenuse () {

local a=$1;

local b=$2;

a=$((a*a))

b=$((b*b))

csqr=$((a+b))

echo ‘echo "scale=10; sqrt($csqr)" | bc‘

}

echo -n "Enter a and b: "

read a b

csqr="Not yet computed"

c=‘hypotenuse $a $b‘

echo "a = $a, b = $b, c = $c, csqr = $csqr"

Running the script

$./hypo3.sh

Enter a and b: 5 6

a = 5, b = 6, c = 7.8102496759, csqr = Not yet computed

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

What happened to csqr?

• Whenever you run a command using ‘...‘ or $(...), a sub-shell is opened.

• A function call also works like a command.

• Any changes in the global variables of this shell, that you make in the sub-shell, have

no effect in this shell.

• This happens even if you export your variables.

• This is the difference between

cmd arg1 arg2 ...

and

storedop=‘cmd arg1 arg2 ...‘

echo "$storedop"

• In the first case, cmd is executed in this shell, and in the second case, in a sub-shell.

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Logical conditions

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Overview

• Needed for conditional execution of blocks, and in loops.

• Unlike C, 0 means True, and non-zero means False.

• A command returns a status.

• The return status indicates true (successful completion) or false (unsuccessful

completion).

• The return status can be accessed as $?.

• Conditions can be logically joined by || or &&, or negated by !.

• Use parentheses (and) for disambiguation (if needed).

• Other types of conditions

• Results of numeric comparisons

• Results of string comparisons

• Conditions on file attributes

• These other conditions can be checked as test condition or as [condition].

• Note the space after [and before].

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Checking return status

Note: && and || are short-circuit operators.

$ ls ~/[a-z].* ; echo $?

ls: cannot access ’/home/foobar/[a-z].*’: No such file or directory

2

$ ls ~/*.[a-z] ; echo $?

/home/foobar/assignment1.c /home/foobar/assignment2.c /home/foobar/assignment3.c

0

$ ls ~/[a-z].* && ls ~/*.[a-z] ; echo $?

ls: cannot access ’/home/foobar/[a-z].*’: No such file or directory

2

$ ls ~/[a-z].* || ls ~/*.[a-z] ; echo $?

ls: cannot access ’/home/foobar/[a-z].*’: No such file or directory

/home/foobar/assignment1.c /home/foobar/assignment2.c /home/foobar/assignment3.c

0

$ ls ~/*.[a-z] && ls ~/[a-z].* ; echo $?

/home/foobar/assignment1.c /home/foobar/assignment2.c /home/foobar/assignment3.c

ls: cannot access ’/home/foobar/[a-z].*’: No such file or directory

2

$ ls ~/*.[a-z] || ls ~/[a-z].* ; echo $?

/home/foobar/assignment1.c /home/foobar/assignment2.c /home/foobar/assignment3.c

0

$! ls ~/[a-z].* ; echo $?

ls: cannot access ’/home/foobar/[a-z].*’: No such file or directory

0

$! ls ~/[a-z].* && ls ~/*.[a-z] ; echo $?

ls: cannot access ’/home/foobar/[a-z].*’: No such file or directory

/home/foobar/assignment1.c /home/foobar/assignment2.c /home/foobar/assignment3.c

0

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Numeric comparisons

• Syntax: [EXPR1 -comp_op EXPR2]

• Numeric comparisons apply to integer values only.

• Fractional/non-numeric/undefined values lead to errors.

• The comparison operators are as follows. Here, “if” means “if and only if”.

-eq True if the two expressions are equal.

-ne True if the two expressions are unequal.

-lt True if the first expression is less than the second.

-le True if the first expression is less than or equal to the second.

-gt True if the first expression is greater than the second.

-ge True if the first expression is greater than or equal to the second.

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Examples of numeric comparison

$ x=3; y=4; z=5

$ [$y -eq 3]; echo $?

[4: command not found

127

$ [$y -eq 3]; echo $?

bash: [: missing ‘]’

2

$ [$y -eq 3]; echo $?

1

$ [$y -gt $x]; echo $?

0

$ [$y -gt $z]; echo $?

1

$ [$y -gt $x] && [$y -gt $z]; echo $?

1

$ [$y -gt $x] && [! $y -gt $z]; echo $?

0

$ [$y -gt $x] || [$y -gt $z]; echo $?

0

$ [$((x**2 + y**2)) -eq $((z**2))]; echo $?

0

$ w=‘echo "scale=10; sqrt($z)" | bc‘; echo $w

2.2360679774

$ [$w -le $x]; echo $?

bash: [: 2.2360679774: integer expression expected

2

$ [! $w -le $x]; echo $?

bash: [: 2.2360679774: integer expression expected

2

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

String comparisons

• Strings can be compared for equality/inequality.

• A string with space(s) should be quoted.

[STR1 = STR2] True if the two strings are equal.

[STR1 == STR2] True if the two strings are equal.

[STR1 != STR2] True if the two strings are unequal.

[-z STR] True if STR is an empty/undefined string.

[-n STR] True if STR is a non-empty string.

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Examples of string comparisons

$ x="Foolan"; y="Foolan Barik"

$ [$x = $y]; echo $?

bash: [: too many arguments

2

$ ["$x" == "$y"]; echo $?

1

$ [! "$x" == "$y"]; echo $?

0

$ ["$x" != "$y"]; echo $?

0

$ [-z "$z"]; echo $?

0

$ z=""; [-z "$z"]; echo $?

0

$ z=" "; [-z "$z"]; echo $?

1

$ z=" "; [-z $z]; echo $?

0

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Conditions based on file attributes

[-e FILE] True if FILE exists

[-f FILE] True if FILE exists and is a regular file

[-s FILE] True if FILE exists and is non-empty

[-d FILE] True if FILE exists and is a directory

[-r FILE] True if FILE exists and has read permission

[-w FILE] True if FILE exists and has write permission

[-x FILE] True if FILE exists and has execute permission

[FILE1 -nt FILE2] True if FILE1 is newer than FILE2

[FILE1 -ot FILE2] True if FILE1 is older than FILE2

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

File conditions: Example

filecheck.sh
#!/bin/bash

[$# -eq 0] && { echo "Run with a command-line argument"; exit 1; }

[! -e "$1"] && { echo "\"$1\" does not exist"; exit 0; }

echo "\"$1\" exists"

[-f "$1"] && echo "\"$1\" is a regular file"

[! -f "$1"] && echo "\"$1\" is not a regular file"

[-d "$1"] && echo "\"$1\" is a directory"

[! -d "$1"] && echo "\"$1\" is not a directory"

echo -n "Permissions:"

[-r "$1"] && echo -n " read"

[-w "$1"] && echo -n " write"

[-x "$1"] && echo -n " execute"

echo ""

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Run filecheck.sh

$./filecheck.sh

Run with a command-line argument

$./filecheck.sh filecheck.sh

"filecheck.sh" exists

"filecheck.sh" is a regular file

"filecheck.sh" is not a directory

Permissions: read write execute

$./filecheck.sh /usr/

"/usr/" exists

"/usr/" is not a regular file

"/usr/" is a directory

Permissions: read execute

$./filecheck.sh /dev/null

"/dev/null" exists

"/dev/null" is not a regular file

"/dev/null" is not a directory

Permissions: read write

$./filecheck.sh /etc/passwd

"/etc/passwd" exists

"/etc/passwd" is a regular file

"/etc/passwd" is not a directory

Permissions: read

$./filecheck.sh ~/spl/*
"/home/abhij/spl/asgn" exists

"/home/abhij/spl/asgn" is not a regular file

"/home/abhij/spl/asgn" is a directory

Permissions: read write execute

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

Disambiguation of logical expressions

• Let A = F, B = F, and C = T .

• So AB+C = (AB)+C = F+T = T , whereas A(B+C) = F(F+T) = FT = F.

• In bash, && and || have the same precedence.

• Left-to-right associativity is used for disambiguation.

• A+BC is interpreted as (A+B)C which evaluates to (T +F)F = TF = F.

• If you mean A+(BC), use parentheses, so it evaluates to T +(FF) = T +F = T .

• true and false are the constant values T and F.

$ ["abc" == "a b c"] && [5 -eq $((3+4))] || [! -f /dev/null] ; echo $?

0

$ ["abc" == "a b c"] && ([5 -eq $((3+4))] || [! -f /dev/null]) ; echo $?

1

$ [! -f /dev/null] || ["abc" == "a b c"] && [5 -eq $((3+4))] ; echo $?

1

$ [! -f /dev/null] || (["abc" == "a b c"] && [5 -eq $((3+4))]) ; echo $?

0

$

Systems Programming Laboratory, Spring 2022 Abhijit Das and Arobinda Gupta

