
CS39002 Operating Systems Laboratory
Lab Test 1
03-Feb-2026, 6:15pm – 7:30pm
Maximum Marks: 50
__

1. Consider the following recursive function in a C program.

void f (int n)
{
 printf("Process with PID = %d calls f(%d)\n", getpid(), n); fflush(stdout);
 if (n >= 2) {
 if (fork()) f(n–1); else f(n–2);
 }
 printf("Process with PID = %d leaves f(%d)\n", getpid(), n); fflush(stdout);
}

The user supplies a non-negative integer value of n as the command-line argument. The main() function only
calls f(n), and exits. You compile the program (to a.out), and run the following two shell commands. Here, grep
searches for the pattern "calls" or "leaves" in the lines printed by the runs of a.out, and wc -l prints the number
of lines that match the given pattern. Derive with proper justifications what output you will get for these two
shell commands. Name the processes as P1, P2, P3, … List the sequence of calls and leaves (like "calls f(4)" or
"leaves f(0)") under each process (in actual order). Make a bifurcation when fork() creates a child process. [8]

$./a.out 4 | grep "calls" | wc -l
$./a.out 4 | grep "leaves" | wc -l

― Page 1 of 4 ―

 Roll No: ___

 Name: ___

This is not asked in the question, but here are some interesting results. Consider the following sequences.

P(n) = Total number of processes involved by the call f (n) (including the outermost process)
C(n) = Total number of all calls of f (), initiated by the outermost call of f (n)
L(n) = Total number of all leaves of f (), initiated by the outermost call of f (n)

We have the following recurrences (establish their correctness).

P(0) = P(1) = 1, and P(n) = P(n – 1) + P(n – 2) for n 2.⩾
C(0) = C(1) = 1, and C(n) = 1 + C(n – 1) + C(n – 2) for n 2.⩾
L(0) = L(1) = 1, and L(n) = L(n – 1) + L(n – 2) + P(n) for n 2.⩾

2. The game of tic-tac-toe is played on a 3 × 3 board. The game involves three processes: umpire, player X, and
player O. A sample run of the game is shown below (right). The implementation details are now elaborated.

The cells of the board are indexed in the row-major order in a two-dimensional 3 × 3
array B of char variables. The top left cell has index (0, 0), and the bottom right cell
has index (2, 2). At the beginning, each cell is initialized to the space character.

You write two C program files umpire.c and player.c. The first file implements the
process umpire, whereas the second file implements the behavior of each player (X
and O). The umpire coordinates the moves of the game. The players interactively (that
is, from the terminal) and alternately enter the cell numbers (row indices and column
indices as per the above convention) which they want to mark. The user inputs are
shaded in the sample run to the right.

The umpire (the executable from umpire.c) starts by creating a single pipe P for all
inter-process communications. It then forks two child processes (one for each player),
each of which execs the executable file player generated by compiling player.c. The
umpire will only read from the pipe P, whereas each player will only write to P. The
exec system call should send two command-line parameters: the player (X or O), and
the descriptor of the write end of P. Each player starts by printing a message to the
terminal (indented as shown at the beginning of the sample run).

Each move of the game involves the following interaction among the processes. Both
players wait for a signal from the umpire. The umpire keeps track of which player
should make the next move; call it N (where N is either X or O). The umpire prints the
prompt [N] (to the terminal), sends SIGUSR1 to N, and waits to read from the pipe P.
The player N jumps to its SIGUSR1 handler function nextmove(). It reads from the user
(terminal) the two indices of the cell which it wants to mark, and writes these indices
to the pipe P. The umpire reads (from P) and validates the indices. A cell (row, col) is
invalid if row and/or col is/are not in the range [0, 2], or the cell is already marked by
some player. So long as the indices sent by N are invalid, the umpire keeps on reading
from N. When a valid cell is supplied by N, the umpire marks that cell by N.

After this, the umpire calls a function checkboard(B). If B is a winning situation for
player X or O, the function returns the character X or O accordingly. Otherwise it
returns the space character. If the umpire receives a non-space character from
checkboard(), it prints (to the terminal) "Player N wins". Otherwise, if the board is not
full, the game continues, or if the board is full, the umpire prints (to the terminal) "The
game ends in a draw". If the game ends in a win or a draw, the umpire calls the
function endgame(). This function is also called if the user hits control-C (see below).

Both umpire and player should catch the signal SIGINT (control-C). For the umpire, the
SIGINT handler is the function endgame() mentioned above. For each player, the SIGINT
handler is a function leave(). In endgame(), the umpire sends SIGINT to both players,
waits for their termination (use waitpid), prints a message (see the end of the sample
to the right), and itself exits. In leave(), each player prints a message to the terminal
(indented in the sample), and exits.

$./umpire
 Player X starts
 Player O starts
 | |
---+---+---
 | |
---+---+---
 | |

[X] 1 0
 | |
---+---+---
 X | |
---+---+---
 | |

[O] 1 1
 | |
---+---+---
 X | O |
---+---+---
 | |

[X] 2 2
 | |
---+---+---
 X | O |
---+---+---
 | | X

[O] 0 2
 | | O
---+---+---
 X | O |
---+---+---
 | | X

[X] 2 0
 | | O
---+---+---
 X | O |
---+---+---
 X | | X

[O] 0 0
 O | | O
---+---+---
 X | O |
---+---+---
 X | | X

[X] 0 2
Invalid move…
[X] 0 3
Invalid move...
[X] 2 1
 O | | O
---+---+---
 X | O |
---+---+---
 X | X | X

Player X wins
 Player X leaving
 Player O leaving
Players exited
Bye...
$

All reads and all writes should use the high-level I/O calls scanf/printf. Use appropriate dup() calls so that the
stdin and stdout buffers are redirected as required. Flush the stdout buffer after every write. Do not use stderr.
Keep a copy of the terminal I/O handlers (and reinstate them) whenever needed.

On the next two pages, fill out the details to implement the behavior of the processes as described above. Use C
constructs only. Do not use sleep() or usleep() anywhere except only at the beginning of umpire.

(a) The code for player.c

First, write the main() function. Notice that each player is supplied two command-line arguments: the identity of
the player (X or O), and the descriptor of the write end of the pipe P. Two global variables player (type char)
and pipefd (type int) are set from these. Then the SIGUSR1 and the SIGINT handlers are registered. After other
bookkeeping (like the necessary dup() calls), the player should go to an infinite wait-for-signal loop.

― Page 2 of 4 ―

int main (___) [10]
{

}

Now, write the signal handler nextmove() for SIGUSR1, and the signal handler leave() for SIGINT. [8]

(b) The code for umpire.c

First, write the signal handler endgame() for SIGINT. Note that the umpire does not catch SIGUSR1. Its blocking
waits are effected by reading from the pipe P, and (at the end) by waitpid(). [4]

The tic-tac-toe board is maintained as 3 × 3 array B of char. You do not need to write the following two functions
on B: a function printboard(B) to print the 3 × 3 array as in the sample run, and the function checkboard(B) as
explained on the last page. Only call these functions at appropriate places.

― Page 3 of 4 ―

int argc, char *argv[]

 player = argv[1][0];
 pipefd = atoi(argv[2]);

 signal(SIGUSR1, nextmove);
 signal(SIGINT, leave);

 printf("\tPlayer %c starts\n", player);

 /* player needs to reuse the terminal for printing the final message, so keep a copy of fd 1 */
 dupout = dup(1); /* dupout is a global variable of type int */
 close(1); dup(pipefd);

 while (1) pause();

void nextmove (int sig)
{
 int row, col;

 scanf("%d%d", &row, &col);
 printf("%d %d\n", row, col);
 fflush(stdout);
}

void leave (int sig)
{
 close(1);
 dup(dupout);
 printf("\tPlayer %c leaving\n", player);
 exit(0);
}

void endgame (int sig)
{
 kill(xpid, SIGINT); waitpid(xpid, NULL, 0);
 kill(opid, SIGINT); waitpid(opid, NULL, 0);
 printf("Players exited\nBye...\n");
 exit(0);
}

In the main() function, the pipe P is created, two player processes X and O are forked (their PID’s are stored as
xpid and opid, and they exec player with appropriate command-line arguments), the handler endgame() is
registered, and appropriate dup() calls are made. After a second’s delay (to allow the child processes to be active
in the system), a call to the function rungame() is made. This function does not return to main(). The umpire exits
from the function endgame().

int main () /* No command-line arguments for umpire */ [10]
{

}

Finally, write the function rungame() that enters a loop. Each iteration of the loop carries out one move of the
game, as explained earlier in detail. In short, the body of the loop involves sending SIGUSR1 to the next player N,
reading from N (and validating the data), marking the specified cell in B, printing the updated board, checking for
possible win/draw status of the game, and (if needed) calling endgame().

void rungame (___) [10]
{

}

― Page 4 of 4 ―

 int pfd[2];
 char pipefd[16];
 char B[3][3] = { { ' ', ' ', ' ' }, { ' ', ' ', ' ' }, { ' ', ' ', ' '} };

 pipe(pfd);
 sprintf(pipefd, "%d", pfd[1]);

 xpid = fork();
 if (!xpid) execlp("player", "./player", "X", pipefd, NULL);

 opid = fork();
 if (!opid) execlp("player", "./player", "O", pipefd, NULL);

 signal(SIGINT, endgame);

 /* umpire will never read from terminal, so permanently close fd 0 */
 close(0); dup(pfd[0]);

 sleep(1);
 rungame(B, xpid, opid);

 exit(0);

 int row, col, nmove = 0;
 char player, winner;
 int plrpid;

 printboard(B);
 while (1) {
 player = (nmove % 2 == 0) ? 'X' : 'O';
 plrpid = (nmove % 2 == 0) ? xpid : opid;
 printf("[%c] ", player); fflush(stdout);
 kill(plrpid, SIGUSR1);
 scanf("%d%d", &row, &col);
 if ((row < 0) || (row > 2) || (col < 0) || (col > 2) || (B[row][col] != ' ')) {
 printf("Invalid move...\n");
 continue;
 }
 ++nmove;
 B[row][col] = player;
 printboard(B);
 winner = checkboard(B);
 if (winner == player) { printf("Player %c wins\n", player); break; }
 if (nmove == 9) { printf("Game ends in a draw\n"); break; }
 }
 endgame(SIGINT);

char B[][3] , int xpid, int opid

