
CS39002 Operating Systems Laboratory
Lab Test 1
07-Feb-2025, 7:30pm – 8:30pm
Maximum Marks: 40
__

1. Consider the following function. Assume that the argument n supplied to the function is non-negative.

void f (int n)
{
 int i;

 for (i=0; i<n; ++i) {
 if (fork()) { printf("A\n"); fflush(stdout); }
 }
 for (i=0; i<n; ++i) wait(NULL);
 printf("B\n"); fflush(stdout);
 exit(0);

}

(a) Derive, as a function of n, how many A’s are printed by the call f(n). Give proper justification. [4]

(b) Derive, as a function of n, how many B’s are printed by the call f(n). Give proper justification. [4]

(c) Prove/Disprove with proper justification: For all values of n 0, the call ⩾ f(n) necessarily prints all the
A’s before all the B’s (irrespective of how the processes are scheduled). [4]

― Page 1 of 4 ―

 Roll No: ___

 Name: ___

In the first iteration, the parent process P prints one A, and creates a new child process C. Both P and C run the loop
for n – 1 more iterations. The number A(n) of A’s printed by f(n) therefore satisfies:

A(n) = 2 A(n – 1) + 1 for n 1.⩾

Moreover,

A(0) = 0.

This is the Tower-of-Hanoi recurrence with the solution

A(n) = 2n – 1 for all n 0.⩾

The number of B’s printed is equal to the number of processes (including the process that makes the call f(n)). The
parent runs the loop for i = 0, 1, 2, . . . , n – 1, with the i-th iteration creating a new child which runs the same loop for
n – i – 1 iterations. The number B(n) of B’s printed by f(n) therefore satisfies:

B(n) = B(n – 1) + B(n – 2) + . . . + B(0) + 1 for n 1.⩾

Moreover,

B(0) = 1.

By induction, it follows that

B(n) = 2n for all n 0.⩾

You may also argue that the number of processes for the call f(n) is twice the number of processes for the call f(n – 1).

False. Consider the call of f(1). The parent process P forks a child process C in the only iteration of the loop. Suppose
that immediately after the call of fork(), P is preempted. Subsequently, C is scheduled. C does not make any iteration
of the loop, prints B, and exits. Then, P is rescheduled. It prints A, goes out of the loop, prints B, and exits. So the
printing sequence in this case is:

B
A
B

2. Consider a tournament played in r rounds by n = 2r players. The players are numbered 1, 2, 3, . . . , n. In the
first round, Player 1 plays with Player 2, Player 3 plays with Player 4, and so on. The winners enter the
second round. Winner 1 plays with Winner 2, Winner 3 plays with Winner 4, and so on. Round 3 is played by
the winners of Round 2, and so on. In the last round, only two remaining players play. A sample tournament
with r = 4 (and n = 16) is shown in the picture below. The losers are shaded. After r = 4 rounds, Player 5
becomes the winner, whereas Player 12 ends up as the runner-up.

The outcomes of the matches are decided by a program called umpire. Each player is simulated by the
program player. The program umpire first reads r from the user (or the command line), and calculates n = 2r.
It then forks n child processes. Each child process execs player with two command-line arguments: the
number p of the player, and the number r of rounds. After this, umpire simulates all the matches randomly,
round by round (in the sequence Round 1, Round 2, . . . , Round r). If w is the winner, and l the loser of a
match, umpire sends SIGUSR1 to w and SIGUSR2 to l. The loser exits immediately (except in Round r). The
winner continues to run. After the last match (the only match in the r-th round), the winner W prints “Player
W: I am the winner”, and the loser L prints “Player L: I am the runner-up”, and both players W and L exit.

You do not have to write the code for umpire. Write the code for each player below. Use only C constructs.
Avoid OS-specific system calls (like Linux-specific sigaction()).

(a) Write the main() function of player. Note that player should avoid busy waits by using pause(). Each player
maintains three global variables: p (the player number), r (the number of rounds), and round (the current
round). It should catch SIGUSR1 and SIGUSR2. For both these signals, the same signal-handler match() is
to be used. You do not have to synchronize the parent process (umpire). [7]

int main (int argc, char *argv[])
{
 /* Read p and r from command-line arguments */

 /* Initialize round */

 /* Register the signal handler */

 /* Enter into a non-busy wait */

 exit(0);
}

― Page 2 of 4 ―

p = atoi(argv[1]);
r = atoi(argv[2]);

round = 0;

signal(SIGUSR1, match);
signal(SIGUSR2, match);

While (1) pause();

(b) Now, write the signal-handler function match(). This should be the only function (other than main()) in the
player program. This would handle both SIGUSR1 and SIGUSR2. The behavior of player upon the
reception of the signals is explained below the picture on the last page. Use no variables other than the global
variables p, r, and round as described earlier. [7]

 match ()
{

}

3. Suppose that a parent process P and n child processes C0, C1, . . . , Cn – 1 cooperate
to perform the following task. Each child process Ci generates its own contribution
xi (a positive integer), and sends xi to P. Subsequently, P combines these
contributions to a positive integer value y = f (x1, x2, . . . , xn), and sends y to all the
child processes. The processes use pipes for all these communications. All child-
to-parent communications (of xi) take place using a single pipe called the parent
pipe. All parent-to-child communications (of y) take place using another single
pipe called the child pipe. Each such communication must use the high-level
printf () and scanf () functions (instead of read() and write()). The processes also
interact with the user using the terminal. The parent reads n from the user. Each
child process prints its contribution xi to the terminal. This is also echoed by the
parent process. After y is computed, P prints it, followed by all the child processes.
A sample transcript that the user sees on the terminal is given to the right. The
printing sequence must be exactly as illustrated in the example. Use the system
call dup() (no other primitive is allowed) for all redirections.

Assume that each xi is generated by a function mycontrib(). The parent stores the
xi values in an array x[]. The parent computes y by calling combine(x,n). You do
not need to write these two functions. The codes for both P and each Ci are written
in the same source file. After each fork, the new child calls a function childmain()
which does not return. Fill out the details of this implementation on the next page.
Use only C constructs. Follow the instructions given as comments.

 Child(0) : x[0] = 7
 Parent : x[0] = 7
 Child(1) : x[1] = 9
 Parent : x[1] = 9
 Child(2) : x[2] = 4
 Parent : x[2] = 4
 Child(3) : x[3] = 7
 Parent : x[3] = 7
 Child(4) : x[4] = 6
 Parent : x[4] = 6
 Child(5) : x[5] = 8
 Parent : x[5] = 8
 Child(6) : x[6] = 4
 Parent : x[6] = 4
 Child(7) : x[7] = 9
 Parent : x[7] = 9
 Child(8) : x[8] = 4
 Parent : x[8] = 4
 Child(9) : x[9] = 8
 Parent : x[9] = 8
 Parent : y = 359
 Child(0) : y = 359
 Child(1) : y = 359
 Child(2) : y = 359
 Child(3) : y = 359
 Child(4) : y = 359
 Child(5) : y = 359
 Child(6) : y = 359
 Child(7) : y = 359
 Child(8) : y = 359
 Child(9) : y = 359

― Page 3 of 4 ―

void int sig

/* signal received for another round */
++round;

/* response to the signal depends on the type of the signal */
if (sig == SIGUSR1) {
 /* player continues to play unless it is the last round */
 if (round == r) {
 printf("Player %d: I am the winner\n", p);
 exit(0);
 }
} else if (sig == SIGUSR2) {
 /* player prints runner-up notification in only the last round, and exits anyway */
 if (round == r)
 printf("Player %d: I am the runner-up\n", p);
 exit(0);
}

(a) First, write the main() function of the parent P. [7]

int main ()
{
 int n, i, x[MAX_SIZE], y;

 /* variables for parent pipe and child pipe */

 printf("Enter number of child processes: "); scanf("%d", &n);

 /* Create the parent pipe and the child pipe */

 /* One by one, create child processes, scanf their contributions (via parent pipe), and printf these
 contributions to terminal. Each child jumps to childmain() with the minimal set of arguments. */

 y = combine(x,n);
 printf("Parent : y = %d\n", y); /* Print to terminal */

 /* One by one printf y to all child processes (via child pipe), and wait for them to print and exit */

 exit(0);
}

(b) Then, write the function childmain() for each child process. [7]

void childmain ()
{
 /* Declare local variables */

 x = mycontrib();
 printf("Child(%d) : x[%d] = %d\n", i, i, x); /* Print to terminal */

 /* Send x to parent (via parent pipe) using printf */

 /* Receive y from parent (via child pipe) using scanf */

 printf("Child(%d) : y = %d\n", i, y); /* Print to terminal */
 exit(0); /* Child does not return to main() */
}

― Page 4 of 4 ―

int pfd[2], cfd[2];

pipe(pfd);
pipe(cfd);

close(0); dup(pfd[0]);

for (i=0; ,i<n; ++i) {
 if (fork()) {
 scanf("%d", x + i);
 printf("Parent : x[%d] = %d\n", i, x[i]);
 } else
 childmain(i,pfd[1],cfd[0]);
}

close(1); dup(cfd[1]);

for (i=0; ,i<n; ++i) {
 printf("%d\n", y); fflush(stdout);
 wait(NULL);
}

int i, int pfd, int cfd

int x, y, fd1cpy;

fd1cpy = dup(1); /* save original stdout for future screen printing */
close(1); dup(pfd);
printf("%d\n", x);

close(0); dup(cfd);
scanf("%d", &y);
close(1); dup(fd1cpy); /* restore original stdout for screen printing */

