
CS39002 OPERATING SYSTEMS LABORATORY

SPRING 2025

LAB ASSIGNMENT: 9
DATE: 26–MAR –2025

__

Demand paging with swapping (no page replacement)

The system

Think of an embedded computing system having 64 MB memory and supporting 4 KB pages. The OS
reserves 16 MB of the memory, so 48 MB / 4 KB = 12288 frames are available for user processes. The
processes in the device are of a specific type. Each process uses 10 pages for storing the essential segments
(code, global variables, and stack). There is an additional data segment that is meant for storing a read-only
array A of s integers, where s ∈ [106, 2 × 106]. Assuming 32-bit integers, the frame requirement of this data
segment lies in the range [977, 1953]. The OS uses a virtual memory with 2048 4-KB pages for each process,
that is, the page table of each process has 2048 entries. The machine has a total of 64 MB / 4 KB = 16384 =
214 frames. Moreover, we also maintain a valid/invalid bit in each entry of the page table. Consequently, 15
bits suffice for each page-table entry. However, computers do not like sizes that are not powers of 2, so each
page-table entry is a 16-bit unsigned short int. The most significant bit is used as the valid/invalid bit.

When a process arrives, the 10 pages in the essential segments are loaded to memory. The array A to be
stored in the additional segment resides in the hard disk. Pages from this array are loaded to memory on
demand. Pages once loaded continue to stay in the memory unless the process terminates or is swapped out.
In order to make the swapping operation efficient, only the 10 essential pages are swapped out. The array A
is assumed to be read-only, so the pages of A do not change during the run of the process. After a swap-in
event, however, all the pages of A that are needed in future must be reloaded from the disk.

The computer starts with n user processes. Each process carries out a sequence of m binary searches using
the following algorithm (x is the search key). Assume that m is constant over all the processes. The scheduler
dispatches the processes in a round-robin fashion. Each time quantum consists of a single binary search.

L = 0; R = s – 1;
while (L < R) {

M = (L + R) / 2;
if (x <= A[M]) R = M;
else L = M + 1;

}

The simulation

In this assignment, you make a single-process (single-thread) simulation of the computer in order to measure
the performance of this memory-management scheme.

To start with, load all the n processes to memory, giving each of them only the 10 essential frames. As
searches are carried out by the processes, the relevant pages of A are loaded to memory frames. Assume that
the array A is different for different processes, that is, each individual process needs to maintain the pages of
its own private array A. If there are many processes, the loaded pages of the arrays A eventually eat up all the
frames in the main memory. When an ongoing search needs to load a new page from its A and the memory is
already full, that process is swapped out, and all the frames (essential and additional) allocated to that
process are returned to the list of free frames. Alongside a list of free frames, a list of swapped out processes
too is to be maintained by the simulation.

When a process P finishes all of its m searches, it quits. All the frames allocated to P are returned to the list
of free frames. After that, a check is done whether the list of swapped-out processes contains any entries. If

not, the simulation continues to the next search (of the next ready process). Otherwise, a single waiting
process Q from the list of swapped-out processes is taken. Q is swapped in by allocating to it only the 10
essential frames. The search of Q, which swapped it out, is restarted before any other search of a ready
process. Since all the frames allocated to P are now available, it is expected that this search of Q will succeed
without a need of a swap-out event again. Notice that the memory freed by P may be temporarily sufficient
to restart multiple swapped-out processes. But this is perhaps not a good idea, because a second restarted
process Q′ (possibly Q too) may soon encounter the memory-full situation and will have to be swapped out
again. It is safer to restart Q′ when another process P′ terminates.

The input and the simulation data

The input is supplied in a text file search.txt. The file starts with n (the number of processes) and m (the
number of searches of each process). You may assume that 50 ⩽ n 500 and 10 ⩽ ⩽ m 100. The input file⩽
then contains n lines, one for each process. Each line contains (exactly) m + 1 integers. The first entry in a
line is the size s of the array A for the process. This is followed by m indices k0, k1, k2, . . . , km – 1 in the array
A (so each kj is in the range [0, s – 1]).

The simulation data consists of the contents of the file search.txt along with some other information (like
how many searches have already been carried out by each of the n processes).

A program gensearch.c for generating random input samples is provided to you. Supply n and m as its two
command-line parameters. The default values are n = 200 and m = 100. Notice that you are not going to
initiate n processes or threads for simulating the behavior of the n processes. So a large value of n is not a
burden to your system. However, it is not recommended to take very large values of m, because we do not
want all or almost all pages of each A to be loaded to memory.

Simulating the binary search

What about the array A and its pages? Well, you actually do not need a real array for this simulation. Each k
in the line of a process in the input file indicates an index in A, where the search terminates. This search must
follow the binary-search algorithm mentioned on the previous page. You may pretend that A[i] = i for all i,
and you are searching for k, so the condition x <= A[M] is simulated by k <= M. However, for the sake of
the simulation, pretend that A[M] is accessed. If the page containing A[M] is already loaded to the memory
(look at the valid/invalid bit in the page table of the process), proceed to the next iteration of the binary-
search loop. Otherwise, this simulates a page fault. Try to load the desired page from A by allocating a free
frame, and updating the corresponding entry in the page table of the process. Then go to the next iteration of
the binary-search loop. If no free frames are available, simulate a swap-out operation.

Maintaining kernel data

In addition to the simulation data, you need to maintain a set of items for simulating the working of the
kernel. First, you need to maintain the page tables of each process. Use your own implementation of this
table. Recall that each page table is an array of 2048 unsigned short integers. The MSB (15-th bit) of each
element of this array is to be used as the valid/invalid bit. Use bit-wise operations to set/clear/retrieve these
bits. No other implementation is allowed.

The kernel data also consists of three lists: the ready queue, the list of free frames, and the list of swapped-
out processes. Implement each of these lists as a FIFO queue. You may use ready-made library
implementations. The ready queue is served in a round-robin fashion, so the next process to be scheduled is
extracted from the front of the queue, and after a successful search, that process is added to the back of the
queue. The other two lists need not be maintained as FIFO queues. But follow this strictly, particularly, for
the list of swapped-out processes. This means that processes are swapped in in the same order as they are
swapped out, a natural strategy indeed.

In addition, you maintain some items as kernel data in order to print certain performance figures at the end of
the simulation. This includes the number of page accesses (accesses of A[M]), the number of page faults
encountered during these accesses, and the number of swaps used in the simulation.

You also compute the degree of multiprogramming achieved by the simulation. Without demand paging, this
is 12288 / 2048 = 6. With demand paging, this increases by a significant factor. Of course, the degree of
multiprogramming is a function of m (the number of searches per process), and should decrease with
increasing m. If m is too large, then nearly all pages of A will be loaded to the memory. For an average size
of 1.5 × 106 of A, this will give a degree of multiprogramming close to 9.

In your simulation, keep track of the number of active (running and not swapped out) processes. Take a
minimum of these counts at all times when the memory is full (that is, a swap-out operation is simulated).
This minimum will be the degree of multiprogramming for the simulation.

Output

In the non-verbose mode, print only the swap-out and swap-in operations, and the final statistics. In the
verbose mode, additionally print the searches carried out in the simulation (process numbers and search
numbers). Use a compile-time flag VERBOSE to switch between the two modes. You may use the following
makefile.

run: demandpaging.c
 gcc -Wall -o runsearch demandpaging.c
 ./runsearch

vrun: demandpaging.c
 gcc -Wall -DVERBOSE -o runsearch demandpaging.c
 ./runsearch

db: gensearch.c
 gcc -Wall -o gensearch gensearch.c
 ./gensearch

clean:
 -rm -f runsearch gensearch

Submit a single C/C++ source file demandpaging.c(pp).

Sample Output

The non-verbose output for a sample run with n = 128 and m = 64 is given below (in a two-column format).
The corresponding input file (search.txt) and the verbose output are provided to you in a separate archive.

$ make run
gcc -Wall -o runsearch demandpaging.c
./runsearch
+++ Simulation data read from file
+++ Kernel data initialized
+++ Swapping out process 57 [127 active processes]
+++ Swapping out process 75 [126 active processes]
+++ Swapping out process 93 [125 active processes]
+++ Swapping out process 107 [124 active processes]
+++ Swapping out process 122 [123 active processes]
+++ Swapping out process 12 [122 active processes]
+++ Swapping out process 36 [121 active processes]
+++ Swapping out process 53 [120 active processes]
+++ Swapping out process 74 [119 active processes]
+++ Swapping out process 95 [118 active processes]
+++ Swapping out process 114 [117 active processes]
+++ Swapping out process 7 [116 active processes]
+++ Swapping out process 31 [115 active processes]
+++ Swapping out process 56 [114 active processes]
+++ Swapping out process 76 [113 active processes]
+++ Swapping out process 92 [112 active processes]
+++ Swapping out process 118 [111 active processes]
+++ Swapping out process 13 [110 active processes]
+++ Swapping out process 33 [109 active processes]
+++ Swapping out process 55 [108 active processes]
+++ Swapping out process 86 [107 active processes]
+++ Swapping out process 111 [106 active processes]
+++ Swapping out process 5 [105 active processes]
+++ Swapping out process 29 [104 active processes]
+++ Swapping out process 60 [103 active processes]
+++ Swapping out process 87 [102 active processes]
+++ Swapping out process 117 [101 active processes]
+++ Swapping out process 20 [100 active processes]
+++ Swapping out process 58 [99 active processes]
+++ Swapping out process 91 [98 active processes]
+++ Swapping out process 125 [97 active processes]
+++ Swapping out process 32 [96 active processes]
+++ Swapping out process 66 [95 active processes]
+++ Swapping out process 102 [94 active processes]
+++ Swapping out process 4 [93 active processes]
+++ Swapping out process 44 [92 active processes]
+++ Swapping out process 82 [91 active processes]
+++ Swapping out process 126 [90 active processes]
+++ Swapping out process 38 [89 active processes]
+++ Swapping out process 71 [88 active processes]
+++ Swapping out process 109 [87 active processes]
+++ Swapping out process 22 [86 active processes]
+++ Swapping out process 62 [85 active processes]
+++ Swapping out process 105 [84 active processes]
+++ Swapping out process 37 [83 active processes]
+++ Swapping out process 96 [82 active processes]
+++ Swapping out process 23 [81 active processes]
+++ Swapping out process 79 [80 active processes]
+++ Swapping out process 6 [79 active processes]
+++ Swapping out process 61 [78 active processes]
+++ Swapping out process 119 [77 active processes]
+++ Swapping out process 41 [76 active processes]
+++ Swapping out process 103 [75 active processes]
+++ Swapping out process 28 [74 active processes]
+++ Swapping out process 88 [73 active processes]
+++ Swapping out process 15 [72 active processes]
+++ Swapping out process 78 [71 active processes]
+++ Swapping out process 14 [70 active processes]
+++ Swapping out process 83 [69 active processes]
+++ Swapping out process 39 [68 active processes]
+++ Swapping out process 123 [67 active processes]
+++ Swapping out process 80 [66 active processes]
+++ Swapping out process 30 [65 active processes]
+++ Swapping out process 116 [64 active processes]
+++ Swapping out process 72 [63 active processes]
+++ Swapping out process 40 [62 active processes]
+++ Swapping out process 3 [61 active processes]
+++ Swapping out process 99 [60 active processes]
+++ Swapping out process 69 [59 active processes]
+++ Swapping out process 68 [58 active processes]
+++ Swapping out process 49 [57 active processes]
+++ Swapping out process 42 [56 active processes]
+++ Swapping out process 43 [55 active processes]
+++ Swapping out process 48 [54 active processes]
+++ Swapping out process 50 [53 active processes]
+++ Swapping out process 64 [52 active processes]
+++ Swapping out process 104 [51 active processes]
+++ Swapping out process 11 [50 active processes]
+++ Swapping out process 46 [49 active processes]
+++ Swapping out process 106 [48 active processes]
+++ Swapping out process 24 [47 active processes]
+++ Swapping out process 81 [46 active processes]
+++ Swapping out process 45 [45 active processes]
+++ Swapping out process 8 [44 active processes]
+++ Swapping out process 112 [43 active processes]
+++ Swapping out process 26 [42 active processes]
+++ Swapping out process 120 [41 active processes]
+++ Swapping out process 121 [40 active processes]
+++ Swapping in process 57 [40 active processes]

+++ Swapping in process 75 [40 active processes]
+++ Swapping in process 93 [40 active processes]
+++ Swapping in process 107 [40 active processes]
+++ Swapping in process 122 [40 active processes]
+++ Swapping in process 12 [40 active processes]
+++ Swapping in process 36 [40 active processes]
+++ Swapping in process 53 [40 active processes]
+++ Swapping in process 74 [40 active processes]
+++ Swapping in process 95 [40 active processes]
+++ Swapping in process 114 [40 active processes]
+++ Swapping in process 7 [40 active processes]
+++ Swapping in process 31 [40 active processes]
+++ Swapping in process 56 [40 active processes]
+++ Swapping in process 76 [40 active processes]
+++ Swapping in process 92 [40 active processes]
+++ Swapping in process 118 [40 active processes]
+++ Swapping in process 13 [40 active processes]
+++ Swapping in process 33 [40 active processes]
+++ Swapping in process 55 [40 active processes]
+++ Swapping in process 86 [40 active processes]
+++ Swapping in process 111 [40 active processes]
+++ Swapping in process 5 [40 active processes]
+++ Swapping in process 29 [40 active processes]
+++ Swapping in process 60 [40 active processes]
+++ Swapping in process 87 [40 active processes]
+++ Swapping in process 117 [40 active processes]
+++ Swapping in process 20 [40 active processes]
+++ Swapping in process 58 [40 active processes]
+++ Swapping in process 91 [40 active processes]
+++ Swapping in process 125 [40 active processes]
+++ Swapping in process 32 [40 active processes]
+++ Swapping in process 66 [40 active processes]
+++ Swapping in process 102 [40 active processes]
+++ Swapping in process 4 [40 active processes]
+++ Swapping in process 44 [40 active processes]
+++ Swapping in process 82 [40 active processes]
+++ Swapping in process 126 [40 active processes]
+++ Swapping in process 38 [40 active processes]
+++ Swapping in process 71 [40 active processes]
+++ Swapping in process 109 [40 active processes]
+++ Swapping in process 22 [40 active processes]
+++ Swapping in process 62 [40 active processes]
+++ Swapping in process 105 [40 active processes]
+++ Swapping in process 37 [40 active processes]
+++ Swapping in process 96 [40 active processes]
+++ Swapping in process 23 [40 active processes]
+++ Swapping in process 79 [40 active processes]
+++ Swapping in process 6 [40 active processes]
+++ Swapping in process 61 [40 active processes]
+++ Swapping in process 119 [40 active processes]
+++ Swapping in process 41 [40 active processes]
+++ Swapping in process 103 [40 active processes]
+++ Swapping in process 28 [40 active processes]
+++ Swapping in process 88 [40 active processes]
+++ Swapping in process 15 [40 active processes]
+++ Swapping in process 78 [40 active processes]
+++ Swapping in process 14 [40 active processes]
+++ Swapping in process 83 [40 active processes]
+++ Swapping in process 39 [40 active processes]
+++ Swapping in process 123 [40 active processes]
+++ Swapping in process 80 [40 active processes]
+++ Swapping in process 30 [40 active processes]
+++ Swapping in process 116 [40 active processes]
+++ Swapping in process 72 [40 active processes]
+++ Swapping in process 40 [40 active processes]
+++ Swapping in process 3 [40 active processes]
+++ Swapping in process 99 [40 active processes]
+++ Swapping in process 69 [40 active processes]
+++ Swapping in process 68 [40 active processes]
+++ Swapping in process 49 [40 active processes]
+++ Swapping in process 42 [40 active processes]
+++ Swapping in process 43 [40 active processes]
+++ Swapping in process 48 [40 active processes]
+++ Swapping in process 50 [40 active processes]
+++ Swapping in process 64 [40 active processes]
+++ Swapping in process 104 [40 active processes]
+++ Swapping in process 11 [40 active processes]
+++ Swapping in process 46 [40 active processes]
+++ Swapping in process 106 [40 active processes]
+++ Swapping in process 24 [40 active processes]
+++ Swapping in process 81 [40 active processes]
+++ Swapping in process 45 [40 active processes]
+++ Swapping in process 8 [40 active processes]
+++ Swapping in process 112 [40 active processes]
+++ Swapping in process 26 [40 active processes]
+++ Swapping in process 120 [40 active processes]
+++ Swapping in process 121 [40 active processes]
+++ Page access summary

Total number of page accesses = 169315
Total number of page faults = 42727
Total number of swaps = 88
Degree of multiprogramming = 40

$

