
CS39002 OPERATING SYSTEMS LABORATORY

SPRING 2025

LAB ASSIGNMENT: 8
DATE: 19–MARCH –2025

__

 Deadlock avoidance by the banker’s algorithm

In this assignment, you study the effects of deadlock in a multi-threaded application. We deal with
the case of multiple instances of each resource type, so you need to use the banker’s algorithm
before the allocation of each request. Let there be m resource types, and n threads contending for
these resources. Assume that 5 ⩽ m 20, and 10 ⩽ ⩽ n 100. Use zero-based indexing.⩽

 Input

The input to the program is to be given in a subdirectory input/. This directory must contain n + 1
text files. The file system.txt stores m, n, and the total numbers of instances of the m resource
types. These instance counts should be used to initialize the AVAILABLE array.

The resource requests of the threads are given (in input/) as the files thread00.txt, thread01.txt,
thread02.txt, and so on (there should be n such files, one for each thread). The file for thread i
consists of the following. The first line stores the maximum needs of the thread for the different
resource types, that is, the initial values for NEED[i][0], NEED[i][1], . . . , NEED[i][m – 1]. This is
followed by a number of resource request lines. Each request line looks as follows.

DELAY R REQ[0] REQ[1] REQ[2] . . . REQ[m – 1]

DELAY is the amount of time that the thread should wait for, after the last request was granted (or
after the beginning of running if that is the first request). Each REQ[j] can be positive, negative, or
0. Let r = REQ[j]. If r is positive, then r additional instances of the j-th resource type is requested. If
r is negative, then |r| instances of the j-th resource type is released. If r = 0, then the thread
continues to work without acquiring or releasing any instance of the j-th resource type.

If REQ[j] 0 for all ⩽ j, then the request is of type RELEASE (meaning release-only). If REQ[j] > 0 for
at least one j, the request is of type ADDITIONAL (implying that additional instances of one or more
resource types are asked for). An ADDITIONAL request may have REQ[j] 0 for some values of ⩽ j.
That is, a demand for additional instances of certain resource types may be concomitantly placed
along with release and/or continue-with components for other resource types.

After the last resource request, a single line should be present in the input file for each thread. This
line looks as follows.

DELAY Q

The thread waits for time DELAY after its last resource request was granted, before it quits. Such a
request is equivalent to a RELEASE request, that is, all the resource instances currently held by the
thread should be returned to the AVAILABLE pool.

A code geninput.c is supplied to you for generating random inputs. This implementation ensures
that each R line is valid, that is, no thread ever tries to release more instances than it currently holds,
nor does the thread ever violate the maximum needs stated in the first line. The program needs the
existence of the directory input/ under the current directory.

 The threads

Write a multi-threaded application to simulate the working of the threads. The master (main) thread
plays the role of the OS, and n additional threads (called user threads) are created by it to simulate
the non-OS threads making the resource requests as mentioned above. Use the pthread API.

The master thread first creates the necessary shared memory (global variables) and synchronization
tools to be used later. The system-wide configurations are read from input/system.txt. The master
thread creates the n user threads. Each user thread reads the appropriate file input/thread??.txt,
and starts simulating the information presented in that file. The delays are simulated by proportional
usleep()’s. A resource request cannot be handled at the user level, so each user thread sends the
request to the master thread. After the last request (Q in the file), the user thread quits.

All requests are handled by the master thread. A request of type RELEASE should be non-blocking.
The user thread that places that request does not need to wait for the request to be served. The
master thread simply adds the released instances to the pool, and goes to process the next request.

A request of type ADDITIONAL is blocking (to the user thread which makes it). The master thread
maintains a FIFO queue Q of pending requests. Upon receiving an ADDITIONAL-type request REQ
from a user thread i, the master thread first looks at the negative entries in REQ. These are release
components, so these instances are added to the AVAILABLE pool, and the corresponding entries in
REQ are replaced by 0. Then, the pair (i, REQ) is enqueued to the back of Q. The user thread must
wait until its request is granted.

Any request (even an ADDITIONAL-type one) potentially changes the AVAILABLE vector. The master
thread, after releasing the instances in the request followed possibly by enqueuing the request, visits
the queue Q in the sequence front to back. For each request R stored there, the master thread first
checks whether the AVAILABLE pool can serve the request R. Moreover, if deadlock avoidance is in
force, the master thread additionally checks whether serving R will leave the system in a safe state.
If everything about serving R is feasible, that request is granted by changing the system-wide
information AVAILABLE, NEED, and ALLOC. Moreover, R is removed from Q, and the user thread from
which R originated is unblocked to proceed further.

Notice that the queue Q and the matrices/vectors needed are not used (not even read) by any user
thread. Only the OS (the master thread) needs to handle these data structures. So these data
structures need not be global. The implementations of these data structures are left to you. That is,
you are allowed to use available library implementations.

 Communications and synchronizations among the threads

In order that the master thread and the n user threads work properly, you need to use primitives
supplied by the pthread API. The requirements for this assignment are enumerated now.

• After the initial book-keeping, the master thread launches all of the n user threads at the
beginning. They must all be ready together before the subsequent simulation can start.
Achieve this using a barrier BOS (beginning of session) initialized to n + 1.

• Requests (types, who sent them, and the m-vectors) are shared between user threads and the
master thread using global memory. Maintain a single global copy of these, that is, all user
threads share these data for communicating with the master thread. Mutual exclusion is to be
enforced by using a mutex rmtx.

• A set of barriers is needed for appropriate handshakings among the threads. The master
thread uses the barrier REQB, and the i-th user thread uses the barrier ACKBi (a single ACKB may
also serve our needs, but it would be safer to use a thread-specific barrier for each of the n
user threads).

The master thread always waits on the barrier REQB (initialized to 2) for synchronizing itself
with a resource request. A user thread i, after locking rmtx, writes its next request to global
memory, and joins REQB. Both the master thread and the user thread i wake up when the two
barrier joins are made. The master thread goes to read the details of the request from global
memory.

The user thread i must not release rmtx immediately after its handshaking using REQB is over.
It must wait until the master thread reads the request completely to its local memory. This
second handshaking is to be done using the acknowledgment barrier ACKi. This barrier should
again be initialized to 2. Only when the read-acknowledgment from the main thread is
synchronized using this barrier, the user thread can release rmtx. Notice that the master
thread does not need to write to global memory associated with the requests. It only reads
the information to its local memory for future processing. So the master thread does not
need to lock rmtx. It can safely operate under the lock held by the requester.

• A RELEASE-type request is non-blocking to the requesting thread. So the requesting thread
can proceed with the next line from its input file. The master thread too releases the
resources in the request (it affects only ALLOC, NEED, and AVAILABLE maintained by it
privately), and proceeds to check the possibility of serving pending requests.

• An ADDITIONAL-type request is not served immediately (even if it can be). The master thread
enqueues it and serves it later (even if it is the only available request). The requesting thread
goes to a conditional wait using (cvi, cmtxi) specific to the requesting thread i. At a later
time, when the master thread can serve this request of the user thread i stored in Q, it sends a
signal to cvi. Use condition variables . A general-purpose counting semaphore is not needed
for this. This is because each user thread waits in its private condition queue, and a waiting
user thread cannot send a new request. Make sure that a signal does not come before the
conditional wait begins (a signal without a waiting thread is lost, so a subsequent wait on the
condition variable will never end). This is unlike a counting semaphore where the count of
signals is stored.

• In order that printing is not garbled, you may use a mutex pmtx.

• The master thread can keep track of how many user threads have exited. This is exactly the
same as the number of Q requests it has handled so far. When all user threads are gone, the
master thread can break out of its request-processing loop, and terminate itself.

 Deadlock avoidance

Keep a compile-time flag whether you allow deadlocks to happen or avoid deadlocks using the
banker’s algorithm. If you allow deadlocks, then the sole criterion for serving a request is the
availability of the instances requested. If you avoid deadlocks, you need to additionally run the
banker’s algorithm to check whether granting a request (even when the required instances are
available) throws the system to an unsafe state. Only when sufficient resource instances are
available and there are no safety issues, the master thread can grant a request pending in Q.

A sample makefile is given below. Run make allow to allow deadlocks to happen. Run make avoid
to enforce deadlock avoidance by the banker’s algorithm.

all:
 gcc -Wall -o resource -pthread resource.c
 gcc -Wall -D_DLAVOID -o resource_nodeadlock -pthread resource.c

allow: all
 ./resource

avoid: all
 ./resource_nodeadlock

db: geninput.c
 gcc -Wall -o geninput geninput.c
 ./geninput 10 20

clean:
 -rm -f resource resource_nodeadlock geninput

 Sample Output

Two sample input directories input1 and input2 will be provided to you. The simulation following
the data of input1 should not lead to a deadlock although the system sometimes go to unsafe states.
The simulation following the data of input2 would lead to a deadlock, and your program will hang.
Wait for some time, and when you see that no new requests are coming (and all running threads are
waiting in Q), you know that this is a case of deadlock (no need to detect deadlocks). Run the
deadlock-avoidance version for the data of input2. Your program should now no longer allow the
system to go to a deadlock, so it will run to completion. The associated output transcripts will also
be supplied to you. Follow the output formats (what to print and how) as given in the transcripts.

__

 Submit a single C/C++ source file.

