
CS39002 OPERATING SYSTEMS LABORATORY

SPRING 2025

LAB ASSIGNMENT: 7
DATE: 12–MARCH –2025

__

Multi-threaded programming with pthreads

Footanical Barden (FooBar) is visited by many visitors. Upon entry to FooBar, a visitor first visits
the flower garden, the aquarium, the zoo, the museum, and the food stall. This takes half an hour to
two hours. FooBar also has a lake where visitors can enjoy boating. At the end of a visit to FooBar,
a visitor catches a boat, and makes a boating tour that runs for 15 minutes to one hour. Each boat
can accommodate a single visitor. A visitor, after enjoying the other attractions of FooBar, goes to
the jetty to catch a boat. If no boats are available, the visitor waits. On the other hand, if no visitors
are ready for boating, the boats wait. After the boat ride, the visitor leaves.

Assume that FooBar has m boats. On some day, it has n visitors. You may assume that 5 ⩽ m 10,⩽
and 20 ⩽ n 100. All the ⩽ m boats are available from the beginning of the day. Also, all the visitors
enter at the beginning (no need to simulate random delays between the arrival of two consecutive
visitors). Upon entering, each visitor decides a random visit time vtime (in the other facilities of
FooBar) and a random ride time rtime on the boat, both integers in the ranges mentioned above. The
visitor first waits for vtime minutes (usleep with one minute scaled down to 100 ms). It then goes to
catch a boat. As soon as a boat is available for the visitor, both that boat and that visitor wait for
rtime minutes (use a proportional usleep). Finally, the visitor leaves, and the boat is again ready for
the ride of a next visitor. Assume that m and n are known beforehand to all the parties involved. You
need to synchronize the boat rides using pthread primitives.

Implement your own counting semaphores

The original pthread standard does not supply the facility of using counting semaphores. However,
condition variables support conditional waits in queues. Implement a counting semaphore using a
condition variable (and an associated mutex). Define a semaphore data structure as follows.

typedef struct {
 int value;
 pthread_mutex_t mtx;
 pthread_cond_t cv;
} semaphore;

When you declare a semaphore structure, initialize it by:

{ init_value, PTHREAD_MUTEX_INITIALIZER, PTHREAD_COND_INITIALIZER }

No other special initialization is needed for this assignment.

Write two functions P(&s) and V(&s), where s is an (initialized) semaphore structure. Use the
algorithms given in Section 6.2.2 of the Dragon Book, that are based on using a queue where callers
of P() wait when the semaphore value is negative. You must not assume that the condition queue is
implemented as a FIFO queue. Although this is usually the case, your program should work even if
the pthread implementation uses any other data structure for condition queues.

In this assignment, all semaphores you use must be of this type. Do not use System V or POSIX
semaphores. Whenever needed, you may use pthread mutexes and barriers.

The threads

The main thread reads m and n from command-line arguments. It then initializes two semaphores
boat and rider, each to 0, and a standalone mutex bmtx to 1. Global variables and arrays are used
for sharing data. A few barriers are also used for synchronization. The main thread initializes a
barrier EOS (end of session) to two.

After this bookkeeping task, the main thread creates m boat threads and n visitor (or rider) threads,
and then wait until the last rider thread completes its boating. This wait will be on the barrier EOS.
The last boat to carry any visitor will be the second thread to wait on the barrier EOS. When both
these threads reach the barrier, there is nothing left in the simulation, so the main thread deletes the
synchronization and mutual-exclusion resources created at the beginning, and the whole process
terminates.

The pseudocodes for each boat thread and for each visitor thread are given below.

Boat thread

Repeat forever: {
Send a signal to the rider semaphore.
Wait on the boat semaphore.
Mark the boat as available.
Get the next rider.
Mark the boat as not available.
Read the ride time of the rider from the shared memory.
Ride with the visitor (usleep).
If there are no more visitors (all of the n visitors have completed riding),

synchronize with the main thread using the barrier EOS.
}

Visitor (or rider) thread

Decide a random visit time vtime and a random ride time rtime.
Visit other attractions for vtime (usleep).
Send a signal to the boat semaphore.
Wait on the rider semaphore.
Get an available boat.
Ride for rtime (usleep).
Leave.

An issue in synchronization

The above pseudocodes achieve the desired behaviors of the boats and the riders except for one
subtle issue. It is possible that several visitors are waiting, and two or more boats become available
at the same time. A similar situation arises when multiple boats are waiting, and two or more
visitors become ready for boating at the same time. To a waiting visitor, it does not matter which
available boat it gets. Likewise, to an available boat, it does not matter which waiting visitor it gets
for its next trip. Well, almost so. Each visitor decides a random boat-ride time rtime beforehand. It
is a necessity for the boat to know which visitor it is taking for the next ride because both that boat
and that visitor will simulate the ride by usleep for rtime. A handshaking between the two threads
(the boat thread and the rider thread) is therefore needed to simulate the ride correctly. One possible
way of achieving this is explained now.

When a boat thread is woken up by a signal operation on the boat semaphore, it has to do a set of
things to catch the next rider (some visitor must be ready for a ride, otherwise who woke up the
boat?). Moreover, if multiple visitors are ready to ride and multiple boats are available, distinct
visitors must be selected by the available boats. An available boat i starts the process by setting a
(shared) flag BA[i] to true, and its next visitor BC[i] to –1. It then uses a barrier BB[i] specific to
that boat and initialized to 2 beforehand. After storing the willingness to take a rider, the boat thread
waits on the barrier BB[i].

Let j be a waiting visitor woken up by a signal from a boat thread sent to the rider semaphore. The
visitor thread makes a search in the shared arrays BA[] and BC[]. If an index i is found such that
BA[i] is true and BC[i] is –1, then the visitor sets BC[i] = j and BT[i] = rtime. Moreover, the visitor
thread j joins the barrier BB[i].

Since two threads join BB[i], the barrier is lifted. Boat i sets BA[i] to false, and reads rtime from
BT[i], and the visitor j and the boat i engage in a ride for rtime (usleep).

There are quite a few issues involved here.

• Accessing (both reading and writing) the shared arrays BA[], BC[], and BT[] needs mutual
exclusion. Use the mutex bmtx to achieve that.

• You need to ensure that the barrier BB[i] is initialized (to 2) by boat i strictly before any
visitor plans to join that barrier. An attempt to join an uninitialized barrier results is an error
(like floating-point exception, and you know that it is not great, while writing codes, to be
exceptional).

• Suppose that BB[i] is appropriately initialized. Boat i, in an attempt to catch a visitor, would
lock bmtx, set BA[i] and BC[i] appropriately, unlock bmtx, and join the barrier BB[i].
However, it may so happen that before being able to complete all these tasks, the boat thread
gets preempted, or is yet to be scheduled after it is woken up by a signal sent to the boat
semaphore, or fails to lock bmtx. But then, no ready visitor can see the availability of boat i
until that boat thread is scheduled, locks bmtx, and finally gets the chance to write its
willingness to accept a rider, in the shared memory (joining BB[i] is not an issue here).

The situation is confusing to visitor j. It knows that some boat must be available (otherwise
who woke it up?). But after making a scan through the entire BA[] and BC[] arrays, visitor
j cannot identify an available boat. All it can do is to retry the search to identify an available
boat. This leads to a busy wait extending over the period for which boat i is not scheduled. It
is important to ensure that after each search, visitor j must release bmtx, otherwise boat i will
never get a chance to write its availability to the shared arrays.

This is not a great solution because it involves a busy wait. In any case, the semaphores
(boat and rider) help us in restricting this busy wait to a small duration. That is, a visitor is
not starting a busy wait immediately after it is ready for riding. It is making a busy wait only
after it is woken up by an available boat. However, starvation is possible if the ride-worthy
visitors keep on acquiring bmtx again and again, preventing the available boats from writing
to the shared memory for an indefinite period of time. If you face this situation, introduce a
small (like 1–10 ms) sleep to each visitor before two consecutive searches.

Superficially, this assignment looks similar to LA6. In LA6, a customer j is enjoying the service of a
waiter i. Here too, a visitor j needs the service of a boat i. In LA6, i is fixed from the beginning for
each j (if that customer is admitted to the restaurant). No search is involved there. Here, boat i and
visitor j can pair up only after a search.

Sample Output

A random output for m = 5 boats and n = 20 visitors is given below. This transcript shows the events
in chronological order (although you cannot see the exact delays). By introducing a shared time
variable, you can achieve that (as you did in LA6). For simplicity, you do not have to repeat that
exercise of maintaining time, in this assignment. Just use appropriate proportional delays.

Boat 2 Ready
Boat 4 Ready
Boat 5 Ready
Boat 1 Ready
Visitor 1 Starts sightseeing for 58 minutes
Boat 3 Ready
Visitor 3 Starts sightseeing for 96 minutes
Visitor 2 Starts sightseeing for 74 minutes
Visitor 4 Starts sightseeing for 36 minutes
Visitor 5 Starts sightseeing for 119 minutes
Visitor 6 Starts sightseeing for 36 minutes
Visitor 8 Starts sightseeing for 118 minutes
Visitor 7 Starts sightseeing for 67 minutes
Visitor 9 Starts sightseeing for 52 minutes
Visitor 10 Starts sightseeing for 51 minutes
Visitor 12 Starts sightseeing for 47 minutes
Visitor 11 Starts sightseeing for 72 minutes
Visitor 13 Starts sightseeing for 47 minutes
Visitor 14 Starts sightseeing for 47 minutes
Visitor 16 Starts sightseeing for 94 minutes
Visitor 15 Starts sightseeing for 77 minutes
Visitor 17 Starts sightseeing for 65 minutes
Visitor 18 Starts sightseeing for 30 minutes
Visitor 20 Starts sightseeing for 106 minutes
Visitor 19 Starts sightseeing for 69 minutes
Visitor 18 Ready to ride a boat (ride time = 46)
Visitor 18 Finds boat 1
Visitor 4 Ready to ride a boat (ride time = 35)
Visitor 4 Finds boat 2
Visitor 6 Ready to ride a boat (ride time = 48)
Visitor 6 Finds boat 3
Boat 2 Start of ride for visitor 4
Visitor 12 Ready to ride a boat (ride time = 24)
Visitor 12 Finds boat 4
Visitor 13 Ready to ride a boat (ride time = 40)
Visitor 13 Finds boat 5
Visitor 14 Ready to ride a boat (ride time = 48)
Boat 4 Start of ride for visitor 12
Boat 1 Start of ride for visitor 18
Boat 3 Start of ride for visitor 6
Boat 5 Start of ride for visitor 13
Visitor 10 Ready to ride a boat (ride time = 34)
Visitor 9 Ready to ride a boat (ride time = 44)
Visitor 1 Ready to ride a boat (ride time = 59)
Visitor 17 Ready to ride a boat (ride time = 60)
Visitor 7 Ready to ride a boat (ride time = 22)
Visitor 19 Ready to ride a boat (ride time = 53)
Boat 2 End of ride for visitor 4 (ride time = 35)
Boat 4 End of ride for visitor 12 (ride time = 24)
Visitor 12 Leaving
Visitor 14 Finds boat 2
Visitor 10 Finds boat 4
Boat 2 Start of ride for visitor 14
Boat 4 Start of ride for visitor 10
Visitor 4 Leaving
Visitor 11 Ready to ride a boat (ride time = 60)
Visitor 2 Ready to ride a boat (ride time = 42)
Visitor 15 Ready to ride a boat (ride time = 51)
Visitor 13 Leaving
Boat 5 End of ride for visitor 13 (ride time = 40)
Visitor 9 Finds boat 5
Boat 5 Start of ride for visitor 9
Visitor 18 Leaving
Boat 1 End of ride for visitor 18 (ride time = 46)
Visitor 1 Finds boat 1
Boat 1 Start of ride for visitor 1
Visitor 16 Ready to ride a boat (ride time = 60)
Visitor 6 Leaving
Boat 3 End of ride for visitor 6 (ride time = 48)
Visitor 17 Finds boat 3
Boat 3 Start of ride for visitor 17
Visitor 3 Ready to ride a boat (ride time = 34)
Boat 4 End of ride for visitor 10 (ride time = 34)
Visitor 10 Leaving
Visitor 7 Finds boat 4
Boat 4 Start of ride for visitor 7
Visitor 20 Ready to ride a boat (ride time = 32)
Visitor 8 Ready to ride a boat (ride time = 59)
Visitor 5 Ready to ride a boat (ride time = 26)
Visitor 14 Leaving
Boat 2 End of ride for visitor 14 (ride time = 48)

Visitor 19 Finds boat 2
Boat 2 Start of ride for visitor 19
Visitor 7 Leaving
Boat 4 End of ride for visitor 7 (ride time = 22)
Visitor 11 Finds boat 4
Boat 4 Start of ride for visitor 11
Boat 5 End of ride for visitor 9 (ride time = 44)
Visitor 9 Leaving
Visitor 2 Finds boat 5
Boat 5 Start of ride for visitor 2
Visitor 1 Leaving
Boat 1 End of ride for visitor 1 (ride time = 59)
Visitor 15 Finds boat 1
Boat 1 Start of ride for visitor 15
Boat 3 End of ride for visitor 17 (ride time = 60)
Visitor 17 Leaving
Visitor 16 Finds boat 3
Boat 3 Start of ride for visitor 16
Visitor 19 Leaving
Boat 2 End of ride for visitor 19 (ride time = 53)
Visitor 3 Finds boat 2
Boat 2 Start of ride for visitor 3
Boat 5 End of ride for visitor 2 (ride time = 42)
Visitor 2 Leaving
Visitor 20 Finds boat 5
Boat 5 Start of ride for visitor 20
Visitor 11 Leaving
Boat 4 End of ride for visitor 11 (ride time = 60)
Visitor 8 Finds boat 4
Boat 4 Start of ride for visitor 8
Visitor 15 Leaving
Boat 1 End of ride for visitor 15 (ride time = 51)
Visitor 5 Finds boat 1
Boat 1 Start of ride for visitor 5
Boat 5 End of ride for visitor 20 (ride time = 32)
Visitor 20 Leaving
Boat 2 End of ride for visitor 3 (ride time = 34)
Visitor 3 Leaving
Visitor 16 Leaving
Boat 3 End of ride for visitor 16 (ride time = 60)
Visitor 5 Leaving
Boat 1 End of ride for visitor 5 (ride time = 26)
Visitor 8 Leaving
Boat 4 End of ride for visitor 8 (ride time = 59)

__

Submit a single C/C++ source file boating.c(pp).

