
CS39002 Operating Systems Laboratory
Spring 2024

Lab Assignment: 1
10-Jan-2024

__

Introduction to multi-process applications

Foobar Fork Factory (FFF) is a famous manufacturer of silverware (cutlery in UK English). For
logistic purposes, FFF has set up offices in many cities. These city offices are organized in the form
of the following tree (produced here with permission from FFF).

This tree is stored in a text file treeinfo.txt in the following format. Each line of the file begins with
the name of a city followed by its number of children, followed by the names of the children cities.
Single spaces are used to separate the fields in each line. The city names may appear in any order.
The alphabetic listing is given below. The child names of a city may appear in any arbitrary order
(not alphabetic in the listing below).

The file treeinfo.txt
 Ahmedabad 0
 Bengaluru 2 Hyderabad Vijayawada
 Bhubaneshwar 0
 Chandigarh 0
 Chennai 1 Pondicherry
 Delhi 3 Mumbai Chandigarh Kanpur
 Goa 0
 Guwahati 1 Imphal
 Hyderabad 1 Kochi
 Imphal 0
 Indore 0
 Jaipur 0
 Kanpur 3 Indore Raipur Patna
 Kochi 1 Goa
 Kolkata 2 Guwahati Bhubaneshwar
 Mumbai 4 Kolkata Ahmedabad Chennai Bengaluru
 Patna 1 Ranchi
 Pondicherry 0
 Raipur 1 Jaipur
 Ranchi 0
 Vijayawada 0

From time to time, some of the city offices need to update their financial reports. A city in the need
of that prepares its updated report by contacting the cities recursively in the subtree rooted at that
city. For example, suppose that the Mumbai office wants to update its report. It first contacts the
Kolkata office. The Kolkata office first contacts the Guwahati office, and the Guwahati office
contacts the Imphal office. Upon receiving the response from the Imphal office, the Guwahati office
updates its report, and sends the updated report to the Kolkata office. Then, the Kolkata office
contacts the Bhubaneshwar office, and upon the receipt of the response from Bhubaneshwar,
prepares its report, and sends it to the Mumbai office. The Mumbai office then contacts the
Ahmedabad office, and so on.

In this assignment, you write a multi-process application proctree to simulate the flow of work in
the above report-update procedure in a city subtree (you do not prepare any reports though). For
each city involved in the update procedure, a process is to be created. The process first opens the
text file treeinfo.txt, and locates the line beginning with its city name. If no such line exists, the
process terminates with an error message (see the sample output for the city name Kharagpur). If
the line can be located, the process prints the name of the city and its PID at an appropriate
indentation. Then, for each child (if any) of the city, it forks a new process, and waits until the child
finishes. The child, in turn, exec’s proctree with its city name. In order that the printing looks like a
tree, each city process must know the level of the node in the subtree being printed. It is therefore
necessary to send a second command-line argument to proctree for specifying this level (the first
command-line argument is the city name). This second command-line argument can be optional
and, if absent, is taken as 0 (meaning “no indentation”).

In essence, this is nothing but a recursive pre-order printing of a subtree, that is, each node prints its
name first, and then recursively prints the subtrees rooted at the children, in the sequence given in
the input text file. However, instead of writing a recursive function, you perform the same task by
creating a process tree. Each recursive call is replaced by a fork, and the child process initiates the
recursive printing of the subtree rooted at that child, whereas the parent process waits until the child
terminates (this is akin to waiting for a recursive call to return).

Write a C program proctree.c, and compile it to prepare an executable file proctree. Submit only the
file proctree.c. Your program must use the fork(), wait(), and exec() calls in the manner specified in
the last two paragraphs. You will be given no credit for solving the problem in any other manner.

Note: Use atoi() (declared in stdlib.h) for converting a numeric string to an integer. For converting
an integer to a (numeric) string, use sprintf () (declared in stdio.h).

Sample output

Each printed line starts with an indentation of four times the level of the node. The city name is then
printed. Finally, the PID of the process is printed within parentheses. Each line is printed by one
process. For example, in the example ./proctree Mumbai below, the printing of the Kochi line is
accomplished by the process ./proctree Kochi 3. This process is forked by ./proctree Hyderabad 2,
has PID 11702, and the second argument 3 instructs the process to start printing after 4 × 3 spaces.

$./proctree
Run with a node name
$./proctree Mumbai
Mumbai (11667)
 Kolkata (11668)
 Guwahati (11670)
 Imphal (11673)
 Bhubaneshwar (11676)
 Ahmedabad (11680)
 Chennai (11683)
 Pondicherry (11687)
 Bengaluru (11693)
 Hyderabad (11697)
 Kochi (11702)
 Goa (11706)
 Vijayawada (11711)
$./proctree Kanpur 2
 Kanpur (11806)
 Indore (11807)
 Raipur (11808)
 Jaipur (11812)
 Patna (11817)
 Ranchi (11823)
$./proctree Delhi
Delhi (11848)
 Mumbai (11849)
 Kolkata (11852)
 Guwahati (11864)
 Imphal (11885)
 Bhubaneshwar (11891)
 Ahmedabad (11896)
 Chennai (11901)
 Pondicherry (11910)
 Bengaluru (11915)
 Hyderabad (11920)
 Kochi (11924)
 Goa (11930)
 Vijayawada (11933)
 Chandigarh (11940)
 Kanpur (11948)
 Indore (11951)
 Raipur (11955)
 Jaipur (11958)
 Patna (11964)
 Ranchi (11968)
$./proctree Kharagpur
City Kharagpur not found
$

