
CS31202/CS39002 Operating Systems, Spring 2023–2024

Class Test 1

06–February–2024 06:30pm–07:30pm Maximum marks: 25

Roll no: Name:

[Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

1. Three processes P0, P1, and P2 are running concurrently on a single-CPU system, where P2 has the highest

priority. Currently, Process P1 is in the running state, P0 is waiting in the ready queue, and P2 is doing an I/O

operation. After some time, P1 terminates and P2 completes I/O, simultaneously. Clearly list step by step all

the events that will take place in the system, before the next process gets allocated to the CPU. Assume that

the system implements a preemptive priority CPU-scheduler. (6)

Solution The steps are as follows.

1. The resources allocated to P1 are released, and the PCB for P1 is removed from the process table.

2. The state in the PCB of P2 is changed from waiting to ready.

3. Now, there are two processes P0 and P2 in the ready state. The scheduler finds that P2 has higher priority

than P0.

4. The scheduler changes the state in the PCB of P2 from ready to running.

5. The scheduler restores the context (registers) of P2 from its PCB to the CPU.

6. The scheduler loads the PC (program counter) of the CPU by the saved PC value in the PCB of P2.

— Page 1 of 4 —



2. Consider a multi-level queue scheduling setup with one CPU and two ready queues Q0 and Q1. Q0 and

Q1 are assigned to store the foreground processes and the background processes, respectively. The Round

Robin scheduling is implemented for queue Q0 with quantum = 2, whereas FCFS scheduling is implemented

for queue Q1. Preemptive priority scheduling is followed across the two ready queues, with Q0 having the

higher priority. Consider the five processes given in the following table. All times are in milliseconds (ms).

Process Arrival Time CPU Burst time Type

P1 0 6 Background

P2 2 3 Foreground

P3 3 4 Foreground

P4 4 8 Background

P5 14 3 Foreground

(a) Draw the Gantt chart in this case, and calculate the average waiting times of all the processes. There is

no need to consider context-switch times in the Gantt chart. (7)

Solution The Gantt chart is given below.

P1 P2 P3 P2 P3 P1 P4 P5 P5 P4

0 2 4 6 7 9 13 14 16 17 24

From this chart, we get the following waiting times.

P1: 13−0−6 = 7

P2: 7−2−3 = 2

P3: 9−3−4 = 2

P4: 24−4−8 = 12

P5: 17−14−3 = 0

— Page 2 of 4 —



(b) Now, assume that the scheduler takes 0.2ms of CPU time in context switching for each completed job,

and 0.1ms of additional CPU time for saving the context of each incomplete job. Neglect the time for

scheduling the same foreground process after its time quantum is over. Calculate the percentage of CPU

time that gets wasted for the scheduling overhead, in this example. Ignore, in your calculations, the time for

the first scheduling, and the time after the last process finishes. (5)

Solution The scheduling overheads at the context-switch instances are as follows.

P1 P2 P3 P2 P3 P1 P4 P5 P5 P4

0 2 4 6 7 9 13 14 16 17 24

0.3 0.3 0.3 0.2 0.2 0.2 0.3 0.200
Scheduling

Overhead
0

The total scheduling overhead is 2.0, and the total CPU time is 24+2 = 26. Therefore the percentage of CPU

time wasted for scheduling is (2/26)×100 ≈ 7.69%.

3. Two cooperative processes P0 and P1 are running concurrently, and share a buffer capable of storing only one

item. P0 keeps on producing items, but multiple items cannot be stored in the buffer. So the other process P1

must read each item from the buffer before P0 writes the next item to the buffer. Writing an item to the buffer

by P0 and reading an item from the buffer by P1 should be mutually exclusive. In order to guard their critical

sections and to alternate their turns, the processes use a variant of Peterson’s algorithm, shown on the next

page. The algorithm is given for Pi (i = 0 or 1). The other process is called Pj, where j = 1− i.

Assume that the compiler or the hardware makes no instruction swaps. Prove/Disprove: This algorithm

enforces mutual exclusion of the critical sections of the two processes. If mutual exclusion is guaranteed,

establish additionally that the turns of the two processes actually alternate. If mutual exclusion is not

guaranteed, give an explicit situation where both the processes may be in their respective critical sections

simultaneously (concurrently) at the same time. (7)

— Page 3 of 4 —



shared boolean flag[2]; /* Initialized to {false, false} */

shared int turn; /* Initialized to 0 (the producer produces first) */

while (1) {

/* Entry section */

flag[i] = true;

while ((flag[j] == true) && (turn == j)) { } /* Busy wait */

/* Critical section */

. . .

/* Exit section */

flag[i] = false;

turn = j;

/* Remainder section */

. . .

}

Solution This algorithm will not provide mutual exclusion. It may lead to a situation as in the original Peterson algorithm

with the first two instructions swapped. In order to see that this may happen, consider the following sequence

of events. Let us assume that we have only one CPU.

1. P0 is running in its remainder section (that is, after producing an item). P1 is preempted in its critical

section (that is, while consuming that item). At this point, we have flag[0] = false, turn = 1, flag[1] = true.

2. P0 is preempted in its remainder section, and P1 is rescheduled.

3. P1 completes its critical section, exit section, and remainder section, and wants to enter its critical section

again. At this point, we have flag[0] = false, turn = 0, flag[1] = true. Since flag[0] = false, the while loop

in the entry section of P1 breaks. So P1 enters its critical section, and is again preempted.

4. P0 is rescheduled, completes its remainder section, and goes back to the top of the entry section. It sets

flag[0] = true, and sees turn = 0, flag[1] = true. Therefore the while loop in the entry section of P0 breaks,

and P0 too enters its critical section.

— Page 4 of 4 —


