
CS39003 Compilers Laboratory
Autumn 2025
Assignment 7

Date of posting: 27-Oct-2025

Three-address code generation for simple statements

This assignment is an extension of the last assignment (LA6). Your input program starts with a set of variable declarations and
structure definitions. For simplicity, we restrict the basic types to int, long int, float, and double only. Moreover, the types of the
variables can only be these basic types, (one- and multi-dimensional) arrays, and structures. Arrays of structures are allowed, so
also are arrays and structures within structures. We remove pointers from the grammar (because of simplicity, and also because
memory allocations to pointers call for dynamic memory management, a topic not covered in this course).

These declarations are followed by a sequence of assignment statements of the following form.

l-value = r-value ;

Here, both the l-value and the r-value must be of the basic data types (numeric only). But we should allow them to have different
types. The r-value is an expression involving numeric (integer and floating-point) arithmetic only. Automatic type conversion is
to be made in arithmetic operations, and also during assignments. We use the following widening conventions among the basic
types. Each arrow indicates widening.

long → double
 ↑ ↑

 int → float

The grammar that your program for this assignment deals with is given below. The terminal symbols are in red. The new/updated
productions (in reference to the grammar of LA6) are highlighted in yellow.

PROG → DECLIST STMTLIST

DECLIST → DECLIST DECL | DECL

DECL → BASIC VARLIST ; | struct id { DECLIST } ; | struct id { DECLIST } VARLIST ; | struct id VARLIST ;
BASIC → int | long | long int | float | double
VARLIST → VARLIST , VAR | VAR
VAR → id DIM
DIM → [num] DIM | ε

STMTLIST → STMTLIST STMT | ε

STMT → ASGN
ASGN → ITEM = EXPR ;
EXPR → EXPR + TERM | EXPR – TERM | TERM
TERM → TERM * FACTOR | TERM / FACTOR | TERM % FACTOR | FACTOR
FACTOR → intconst | fltconst | ITEM | (EXPR)

ITEM → SMPLITEM | ITEM . SMPLITEM
SMPLITEM → id | AREF
AREF → AREF [EXPR] | id [EXPR]

Your code will print the type table and the symbols tables (in the same format as in LA6), followed by a sequence of 3-address
instructions generated from the assignment statements. There is no need to store the 3-address instructions in quads or triples.

A memory location is accessed in (written to) an l-value. The r-value, on the other hand, may also contain one or more numeric
operands stored in the memory. We assume that there is a single memory segment for all the variables. A numeric operand is
specified as MEM(offset, width). Here, offset is the offset (in bytes) of the numeric variable in the data segment, and width is the
size of the numeric variable. We assume that int and float are of size 4 bytes, and long and double are of size 8 bytes. Consider the
following declarations.

long a, b;
int c, A[5][5];

struct mystruct { double x; float A[10]; } S, SA[4][4];

These variables are stored in the memory segment as follows.

a 0 – 7 width = 8
b 8 – 15 width = 8
c 16 – 19 width = 4
A 20 – 119 width = 100
S 120 – 167 width = 8 + 40 = 48

S.x 120 – 127 width = 8
S.A 128 – 167 width = 40

SA 168 – 935 width = 48 × 16 = 768

Therefore, a is referred to as MEM(0,8), b as MEM(8,8), c as MEM(16,4), A[2][3] as MEM(20 + 20 × 2 + 4 × 3 = 72,4), S.x as MEM(120,8),
and SA[1][2].A[3] as MEM(168 + (1 × 4 + 2) × 48 + 8 + 4 × 3 = 476,4). Non-numeric types like A[2], SA[1][2], and SA[1][2].A are never
to be used as an l-value, or as an r-value, or as an operand of an arithmetic operation. All offsets in the memory segment are
assumed to be int-valued.

Against all intermediate grammar symbols in an expression or l-value, we maintain the type of that variable. This type is not
necessarily basic. For example, SA[1][2].A[3] is parsed successively as SA[1], SA[1][2], and SA[1][2].A[3]. During an arithmetic
operation, we use the widening conventions of basic data types. For example, the addition of an int and a long will first typecast
the int to a long, and then the addition is carried out, and the multiplication of a long and a float will typecast both to double.
Moreover, during an assignment, l-value = r-value; the r-value is converted to the type of l-value (if these two types are
different); this conversion may be a case of widening or one of narrowing. We use the operator (src2dst) to convert from the
source type src to the destination type dst. For example, t56 = (lng2dbl)t48 widens the temporary t48 of type long to the
temporary t56 of type double. If t56 is is to be stored in an int variable in memory, then we need a narrowing: t57 = (dbl2int)t56.
This will be followed by the store instruction MEM(1234,4) = t57.

Lex file

Update your lex file of Assignment 6 as follows. Remove many basic data types as keywords. Here, we deal only with the basic
types int, long (also called long int), float, and double. Add new punctuation symbols: dot (identifying fields in structures), arithmetic
operators, the assignment operator, and parentheses (for grouping in expressions). Finally, identify lexemes that qualify as intconst
and fltconst (note that num used in array dimensions is also an intconst).

Yacc file

Update the productions for BASIC (remove the extra basic types). Also remove productions involving pointers. Add the new
productions highlighted on the last page.

As in LA6, read the declarations at the beginning of the code, and store all relevant information in a global type table TT and
multiple symbol tables ST (ST[0] is for the data segment, ST[1], ST[2], … are for individual structure definitions).

Every non-terminal grammar symbol appearing under EXPR and ITEM has an address addr (not a memory address or an offset, but
a reference to a three-address instruction). This addr can be one of the five categories: (i) an integer constant (intconst), (ii) a
floating-point constant (fltconst), (iii) the number of a temporary storing an intermediate numeric result (temp), (iv) an absolute
memory offset in the data segment (offset), and (v) the number of a temporary storing a calculated offset in the data segment
(toffset). The value of an addr is a union of the data types of the five possibilities. Moreover, we need to maintain the data type
of each addr, because type checking and type conversion are needed for arithmetic and assignment operations. We summarize the
components of addr in the table below.

Category Data type of value Type of the non-terminal Examples
__

intconst int Index of INT in TT intconst

fltconst double Index of DBL in TT fltconst

temp numeric Index of INT/LNG/FLT/DBL in TT FACTOR, TERM, EXPR
offset int Index in TT of type of data at offset ID

toffset int Index in TT of type of data at offset, stored in a temporary AREF, ITEM.SMPLITEM
__

As an example, consider how ITEM derives SA[1][2].A[3] (rightmost derivation).

ITEM → ITEM . SMPLITEM → ITEM . AREF → ITEM . ID[NUM] → AREF . ID[NUM] → AREF[NUM] . ID[NUM] → ID[NUM][NUM] . ID[NUM]

The reduction process generates the following intermediate addresses (calculated in temporaries of category toffset).

Category Data type of value Type (index in TT of) Offset in data segment / structure
__

SA[1] toffset int array(4, struct mystruct) 168 + 192 × 1 = 360
SA[1][2] toffset int struct mystruct 360 + 48 × 2 = 454
A[3] toffset int float 8 + 4 × 3 = 20
SA[1][2].A[3] toffset int float 454 + 20 = 476
__

It is to be noted that A[3] in the above example illustrates an entry to be found in the symbol table for struct mystruct. The
global variable A[3] (without the structure reference) is also an addr of category toffset, value int, type array(5, float), and
offset 20 + 20 × 3 = 80 (in data segment). We can use SA[1][2].A[3] as an l-value or as an operand in an r-value (because its
type is float), but the global A[3] cannot be used like that (because it is an array and not of a numeric type).

Since variable names are stored in different symbol tables, it is mandatory to use the correct symbol-table number. By default, a
variable name refers to the global symbol table ST[0]. As soon as the dot operator is encountered (indicating a reference to a
structure), we must have ITEM . at the top of the parse stack. The type of this ITEM must be a reference to a structure type in TT.
This entry in the TT stores the symbol-table number for the structure. Use a marker non-terminal to pass on this symbol-table
number as the name-space for the SIMPLITEM that will later be pushed to the parse stack to complete the handle ITEM . SIMPLITEM.

Other than this, all expressions are evaluated in a synthesized manner. An operand in an expression can be either a value stored in
a temporary or the memory offset stored in a temporary. A toffset-category addr is first loaded to a temporary. Then, the
operation is carried out, and the result is stored in a temp-category addr. Before each arithmetic operation, a check for type
compatibility and type coercion(s) (if necessary) are to be carried out.

Finally, an assignment l-value = r-value; the l-value should have a valid memory offset and a numeric type. The r-value, on
the other hand, can be of different categories (constant, temporary, memory offset, or a memory offset stored in a temporary). All
these cases should be handled. Moreover, data stored in r-value should be converted to the type of l-value (if necessary) before
the storage is done.

The main() function written in the yacc file or elsewhere should redirect lex’s input to a file name. The declarations are first read,
and the type table and all the symbol tables are printed in the same format as in Assignment 6. This is followed by a printing of
the 3-address instructions generated from the assignment statements, in a format described in the following sample output.

What to submit

Submit an archive (tar/tgz/zip) consisting of the following files: (i) the lex file basiccodegen.l, (ii) the yacc file basiccodegen.y,
(iii) any other source/header file(s) that you write, and (iv) makefile.

Sample Output

Consider the following input file.

long a, b;
float c;

int A[5][10];

struct coll {
 float f;
 double d;
 long x;
 int A[100];
};

struct coll S, T[10][10];

struct bigcoll {
 long n;
 struct coll C[5][5];
} BC[10];

a = 10;
b = a;
c = a + b;

A[1][2] = 2;
A[2][3] = A[1][2] + 5;
A[4][5] = A[1][2] - A[2][3] + c * 123;

T[5][5].x = 100.;
T[5][5].d = T[5][5].x;
S.A[25] = (a + b) * (a - c);
S.x = S.A[25];

BC[5].C[4][3].x = 100;
BC[6].C[5][4].A[50] = BC[5].C[4][3].x;
BC[6].C[5][4].A[80] = BC[5].C[4][3].A[50] + 345.;

BC[A[a/b][c/b]].n = A[a-6][BC[6].C[5][4].A[80]/BC[5].C[4][3].x+1.35792468];

BC[6].C[5][4] = T[7][7];

The output on this file may be presented in the following format.

+++ All declarations read

+++ 14 types
 Type 0: 4 int
 Type 1: 8 long
 Type 2: 4 float
 Type 3: 8 double
 Type 4: 40 array(10,int)
 Type 5: 200 array(5,array(10,int))
 Type 6: 420 struct coll [st = 1]
 Type 7: 400 array(100,int)
 Type 8: 4200 array(10,struct coll [st = 1])
 Type 9: 42000 array(10,array(10,struct coll [st = 1]))
 Type 10: 10508 struct bigcoll [st = 2]
 Type 11: 2100 array(5,struct coll [st = 1])
 Type 12: 10500 array(5,array(5,struct coll [st = 1]))
 Type 13: 105080 array(10,struct bigcoll [st = 2])

+++ Symbol table 0 [main]
 a 0 - 7 type = 1 = long
 b 8 - 15 type = 1 = long
 c 16 - 19 type = 2 = float
 A 20 - 219 type = 5 = array(5,array(10,int))
 S 220 - 639 type = 6 = struct coll [st = 1]
 T 640 - 42639 type = 9 = array(10,array(10,struct coll [st = 1]))
 BC 42640 - 147719 type = 13 = array(10,struct bigcoll [st = 2])
 Total width = 147720

+++ Symbol table 1 [struct coll]
 f 0 - 3 type = 2 = float
 d 4 - 11 type = 3 = double
 x 12 - 19 type = 1 = long
 A 20 - 419 type = 7 = array(100,int)
 Total width = 420

+++ Symbol table 2 [struct bigcoll]
 n 0 - 7 type = 1 = long
 C 8 - 10507 type = 12 = array(5,array(5,struct coll [st = 1]))
 Total width = 10508

[lng] t1 = (int2lng)10
[lng] MEM(0,8) = t1

[lng] t2 = MEM(0,8)
[lng] MEM(8,8) = t2

[lng] t3 = MEM(0,8)
[lng] t4 = MEM(8,8)
[lng] t5 = t3 + t4
[flt] t6 = (lng2flt)t5
[flt] MEM(16,4) = t6

[int] t7 = 40 * 1
[int] t8 = 20 + t7
[int] t9 = 4 * 2
[int] t10 = t8 + t9
[int] MEM(t10,4) = 2

[int] t11 = 40 * 2
[int] t12 = 20 + t11
[int] t13 = 4 * 3
[int] t14 = t12 + t13

[int] t15 = 40 * 1
[int] t16 = 20 + t15
[int] t17 = 4 * 2
[int] t18 = t16 + t17
[int] t19 = MEM(t18,4)
[int] t20 = t19 + 5
[int] MEM(t14,4) = t20

[int] t21 = 40 * 4
[int] t22 = 20 + t21
[int] t23 = 4 * 5
[int] t24 = t22 + t23
[int] t25 = 40 * 1
[int] t26 = 20 + t25
[int] t27 = 4 * 2
[int] t28 = t26 + t27
[int] t29 = 40 * 2
[int] t30 = 20 + t29
[int] t31 = 4 * 3
[int] t32 = t30 + t31
[int] t33 = MEM(t28,4)
[int] t34 = MEM(t32,4)
[int] t35 = t33 - t34
[flt] t36 = MEM(16,4)
[flt] t37 = (int2flt)123
[flt] t38 = t36 * t37
[flt] t39 = (int2flt)t35
[flt] t40 = t39 + t38
[int] t41 = (flt2int)t40
[int] MEM(t24,4) = t41

[int] t42 = 4200 * 5
[int] t43 = 640 + t42
[int] t44 = 420 * 5
[int] t45 = t43 + t44
[int] t46 = t45 + 12
[lng] t47 = (dbl2lng)100.0000000000000000
[lng] MEM(t46,8) = t47

[int] t48 = 4200 * 5
[int] t49 = 640 + t48
[int] t50 = 420 * 5
[int] t51 = t49 + t50
[int] t52 = t51 + 4
[int] t53 = 4200 * 5
[int] t54 = 640 + t53
[int] t55 = 420 * 5
[int] t56 = t54 + t55
[int] t57 = t56 + 12
[lng] t58 = MEM(t57,8)
[dbl] t59 = (lng2dbl)t58
[dbl] MEM(t52,8) = t59

[int] t60 = 4 * 25
[int] t61 = 20 + t60
[int] t62 = 220 + t61
[lng] t63 = MEM(0,8)
[lng] t64 = MEM(8,8)
[lng] t65 = t63 + t64
[lng] t66 = MEM(0,8)
[flt] t67 = MEM(16,4)
[dbl] t68 = (lng2dbl)t66
[dbl] t69 = (flt2dbl)t67
[dbl] t70 = t68 - t69
[dbl] t71 = (lng2dbl)t65
[dbl] t72 = t71 * t70
[int] t73 = (dbl2int)t72
[int] MEM(t62,4) = t73

[int] t74 = 220 + 12
[int] t75 = 4 * 25
[int] t76 = 20 + t75
[int] t77 = 220 + t76
[int] t78 = MEM(t77,4)
[lng] t79 = (int2lng)t78
[lng] MEM(t74,8) = t79

[int] t80 = 10508 * 5
[int] t81 = 42640 + t80
[int] t82 = 2100 * 4
[int] t83 = 8 + t82
[int] t84 = 420 * 3
[int] t85 = t83 + t84
[int] t86 = t81 + t85
[int] t87 = t86 + 12
[lng] t88 = (int2lng)100
[lng] MEM(t87,8) = t88

[int] t89 = 10508 * 6
[int] t90 = 42640 + t89
[int] t91 = 2100 * 5
[int] t92 = 8 + t91
[int] t93 = 420 * 4
[int] t94 = t92 + t93
[int] t95 = t90 + t94
[int] t96 = 4 * 50
[int] t97 = 20 + t96
[int] t98 = t95 + t97
[int] t99 = 10508 * 5
[int] t100 = 42640 + t99
[int] t101 = 2100 * 4
[int] t102 = 8 + t101
[int] t103 = 420 * 3
[int] t104 = t102 + t103
[int] t105 = t100 + t104
[int] t106 = t105 + 12
[lng] t107 = MEM(t106,8)
[int] t108 = (lng2int)t107
[int] MEM(t98,4) = t108

[int] t109 = 10508 * 6
[int] t110 = 42640 + t109
[int] t111 = 2100 * 5

[int] t112 = 8 + t111
[int] t113 = 420 * 4
[int] t114 = t112 + t113
[int] t115 = t110 + t114
[int] t116 = 4 * 80
[int] t117 = 20 + t116
[int] t118 = t115 + t117
[int] t119 = 10508 * 5
[int] t120 = 42640 + t119
[int] t121 = 2100 * 4
[int] t122 = 8 + t121
[int] t123 = 420 * 3
[int] t124 = t122 + t123
[int] t125 = t120 + t124
[int] t126 = 4 * 50
[int] t127 = 20 + t126
[int] t128 = t125 + t127
[int] t129 = MEM(t128,4)
[dbl] t130 = (int2dbl)t129
[dbl] t131 = t130 + 345.0000000000000000
[int] t132 = (dbl2int)t131
[int] MEM(t118,4) = t132

[lng] t133 = MEM(0,8)
[lng] t134 = MEM(8,8)
[lng] t135 = t133 / t134
[int] t136 = (lng2int)t135
[int] t137 = 40 * t136
[int] t138 = 20 + t137
[flt] t139 = MEM(16,4)
[lng] t140 = MEM(8,8)
[dbl] t141 = (flt2dbl)t139
[dbl] t142 = (lng2dbl)t140
[dbl] t143 = t141 / t142
[int] t144 = (dbl2int)t143
[int] t145 = 4 * t144
[int] t146 = t138 + t145
[int] t147 = MEM(t146,4)
[int] t148 = 10508 * t147
[int] t149 = 42640 + t148
[int] t150 = t149 + 0
[lng] t151 = MEM(0,8)
[lng] t152 = (int2lng)6
[lng] t153 = t151 - t152
[int] t154 = (lng2int)t153
[int] t155 = 40 * t154
[int] t156 = 20 + t155
[int] t157 = 10508 * 6
[int] t158 = 42640 + t157
[int] t159 = 2100 * 5
[int] t160 = 8 + t159
[int] t161 = 420 * 4
[int] t162 = t160 + t161
[int] t163 = t158 + t162
[int] t164 = 4 * 80
[int] t165 = 20 + t164
[int] t166 = t163 + t165
[int] t167 = 10508 * 5
[int] t168 = 42640 + t167
[int] t169 = 2100 * 4
[int] t170 = 8 + t169
[int] t171 = 420 * 3
[int] t172 = t170 + t171
[int] t173 = t168 + t172
[int] t174 = t173 + 12
[int] t175 = MEM(t166,4)
[lng] t176 = MEM(t174,8)
[lng] t177 = (int2lng)t175
[lng] t178 = t177 / t176
[dbl] t179 = (lng2dbl)t178
[dbl] t180 = t179 + 1.3579246800000000
[int] t181 = (dbl2int)t180
[int] t182 = 4 * t181
[int] t183 = t156 + t182
[int] t184 = MEM(t183,4)
[lng] t185 = (int2lng)t184
[lng] MEM(t150,8) = t185

[int] t186 = 10508 * 6
[int] t187 = 42640 + t186
[int] t188 = 2100 * 5
[int] t189 = 8 + t188
[int] t190 = 420 * 4
[int] t191 = t189 + t190
[int] t192 = t187 + t191
[int] t193 = 4200 * 7
[int] t194 = 640 + t193
[int] t195 = 420 * 7
[int] t196 = t194 + t195

*** Error: invalid type of l-value

