
CS39003 Compilers Laboratory
Autumn 2025
Assignment 6

Date of posting: 13-Oct-2025

Yacc programming with inherited attributes (continued)

This assignment is a continuation of Assignment 5. Here, you add structures to the list of variable types. The definition of a
structure involves the specification of the component fields. This specification may be optionally followed by a list of variables.
One may also use a structure type defined earlier in the program to introduce new variables of that structure type. We reproduce
the grammar of Assignment 5 below. The three new productions that deal with structures are highlighted. The terminal symbols
are in color red.

PROG → DECLIST
DECLIST → DECLIST DECL | DECL
DECL → BASIC VARLIST ; | struct id { DECLIST } ; | struct id { DECLIST } VARLIST ; | struct id VARLIST ;
BASIC → void | char | unsigned char | short | short int | unsigned short | unsigned short int |

 int | unsigned | unsigned int | long | long int | unsigned long | unsigned long int | float | double
VARLIST → VARLIST , VAR | VAR
VAR → * VAR | id DIM
DIM → [num] DIM | ε

Here is an example of a set of declarations generated by PROG (or DECLIST).

char letter, alphabet[26];
unsigned long int a, *p, **q, ***r, A[5], B[6][7], **C[2][3][4];
void *vptr;

struct stud {
 char roll[10];
 char name[101];
 short int yob;
 float CGPA;
 char gender;
} FooBar;
struct stud BTech[200], Dual[100], MTech[150], MS[100], PhD[250];

struct listnode {
 struct coordinates {
 int x, y, z;
 } point;
 struct listnode *next, *prev;
};

struct listnode *head, *tail;

Modify your code for Assignment 5 to incorporate structures. The incremental work to be carried out is explained below.

Lex file

Use your last ctype.l with two additions. Now, struct is a new keyword introduced. Moreover, you need to handle the new
punctuation symbols: { and }

Type table

The global type table TT stores the basic data types, and the array and pointer types as in Assignment 5.

The declaration of each structure introduces a new name space (a new symbol table). We use only named structures. The type
table will store an entry for each structure. The category of that entry is STRUCTURE, and the reference is the serial number of the
symbol table for that structure. Moreover, we need to store the structure name in that TT entry. This name is not to be confused
with the variable names of that structure type. Consider struct stud as defined above. There will be a single entry in TT for this
structure, and the name field will store stud. The type of the variable FooBar will be this entry in TT. The subsequent declarations
of the student arrays will insert the following new array types in TT:

array(200,struct stud), array(100,struct stud), array(150, struct stud), and array(250,struct stud).

The types of the arrays Dual and MS are the same: array(100,struct stud).

Allow structure definitions to be nested. In the above example, struct coordinates is declared inside struct listnode. Any
structure declaration is to be treated globally, that is, struct coordinates can be used to declare variables outside the scope of
struct listnode. Allow pointers to a structure being defined, inside that structure (like next and prev in the example).
However, non-pointer references (variables or arrays) to a structure cannot be allowed until that structure is fully defined.

The calculation of the width of a structure uses the same ideas as that of the symbol table storing global variables. We continue to
enforce that all variables are 4-byte aligned, that is, start at locations in their respective name spaces (the global data segment or
the memory of a structure), that are multiples of 4. As an example, consider the following structure declared earlier.

struct stud {
 char roll[10];
 char name[101];
 short int yob;
 float CGPA;
 char gender;
} FooBar;

The variable FooBar will start at an address which is a multiple of 4. The individual components of the structure will also be 4-
byte aligned. A 9-letter roll number with a trailing null character is stored in a char array roll of size 10, and occupies memory
locations 0 – 9 relative to the beginning of the structure. The next array name starts at the next multiple of 4, that is, from offset 12
inside the structure, and will occupy memory locations 12 – 112. The third entry is a short int requiring 2 bytes. It will occupy
memory locations 116 – 117 (not 113 – 114 immediately after name). Likewise, CGPA will occupy locations 120 – 123, and
gender 124 – 124. The structure uses (relative) memory locations 0 – 124, that is, 125 bytes. But its width must be a multiple of
4, that is, the width stored in TT against struct stud will be 128.

We now tabulate the fields of each entry in TT. Each blank entry in the following table means that that field is not used. The last
row is added to the same table of Assignment 5.

Category Dimension Reference Width Name

 VOID 0
 UCHR 1
 …
 DBL 8
 ARRAY Number of elements Index of the element type Calculated
 POINTER Index of the element type Pointer size (usually 8)
 STRUCTURE Number of symbol table Calculated Structure name

Design your own implementation (array of records) for the global type table TT. Use linear search in that array. There is no
need to go for an efficient data structure to be designed by you or available in any ready-made library.

Symbol tables

Maintain several symbol tables. The main symbol table stores all the names (and associated information) of the variables declared
outside any structure. Each structure, on the other hand, has its own symbol table storing the variables declared in the list for that
structure. Each entry in each symbol table will again be a triple (name, type, offset), where name is the user-given name of the
component (field), type is a reference to (index in) the entry in the type table TT, storing the type of that component, and offset
is the starting location (a multiple of 4) of the component in its symbol table.

Design your own implementation for the symbol tables. Again you do not have to go for any efficient data structures. Instead
use a two-dimensional array of (name, type, offset) triples. The outer dimension (row) stores the number of the symbol table.
The main symbol table is at row 0, and the subsequent rows are for the structures. Each row will store information of the variables
appearing in that name space. Whenever needed, make linear search (for a name) in each symbol table.

Also modify the function to insert a variable in a symbol table. This function would now require three arguments: the name of the
variable, the number (row index) of the symbol table, and the type of the variable (an index in TT). The offset of that variable to
be stored as a triple (name, type, offset) is to be computed by the insertion function. A global array (no longer a single variable)
is to be used to store the current widths (maintained as multiples of 4) of all the symbol tables. Disallow duplicate names of two
variables in each symbol table. Names may however be shared by variables in different symbol tables.

Yacc file

Implement the grammar given at the beginning of this assignment (and no other grammar). You only need to insert appropriate
marker non-terminals in the appropriate places of the productions. The types and the widths of types, and the offsets of the
variables are calculated and stored globally as in Assignment 5.

Now you need to use additional inherited attributes (and the associated marker non-terminals). Each DECLIST must be associated
with the number of the symbol table where all variables declared in that name space must be inserted. A DECL may involve the
definition of a struct type, which itself has its own DECLIST. This DECLIST must receive the next symbol-table number. A DECL
using a struct type defined earlier, uses the symbol-table number for that structure (stored in the TT entry for that structure). Use a
marker non-terminal before each DECLIST to store this symbol-table number. This symbol-table number must move down the
parse tree to all the variables declared in that name space. You need this number in the insert function for that symbol table. It is
illegal to use an undefined structure name to declare variables of that structure type. A search in TT can detect this error.

There is another situation where you need a marker non-terminal. At the beginning of the DECLIST in a struct definition, an entry
for that structure type is created in TT. This DECLIST is stored in a new symbol table. However, the width of that symbol table is
also to be stored in the TT entry for that structure. It is correctly computed after that DECLIST is completely read, and shifted to the
top of the parse stack. Use a marker non-terminal after the DECLIST, to store the final width of the structure in its entry in TT.

Printing the tables

After all declarations are read, print the type table TT, and the details of the variables stored in all the symbol tables. Use the
format as explained in the section “Sample Output” below. Write (update) suitable functions for doing these tasks.

What to submit

Write a makefile with compile, run, and clean targets. Pack you lex file, your yacc file, the makefile, and any other source or
header file that you use (not lex.yy.c, y.tab.h or y.tab.c) in a single zip/tar/tgz archive. Submit that archive only.

Sample Output

For the declarations given on the first page (stored in the file decl.c), the output follows.

$ make run
yacc -d ctype.y
lex ctype.l
gcc y.tab.c lex.yy.c
./a.out decl.c
+++ All declarations read

+++ 32 types
 Type 0: 0 void
 Type 1: 1 unsigned char
 Type 2: 1 char
 Type 3: 2 unsigned short
 Type 4: 2 short
 Type 5: 8 unsigned long
 Type 6: 8 long
 Type 7: 4 unsigned int
 Type 8: 4 int
 Type 9: 4 float
 Type 10: 8 double
 Type 11: 26 array(26,char)
 Type 12: 8 pointer(unsigned long)
 Type 13: 8 pointer(pointer(unsigned long))
 Type 14: 8 pointer(pointer(pointer(unsigned long)))
 Type 15: 40 array(5,unsigned long)
 Type 16: 56 array(7,unsigned long)
 Type 17: 336 array(6,array(7,unsigned long))
 Type 18: 32 array(4,pointer(pointer(unsigned long)))
 Type 19: 96 array(3,array(4,pointer(pointer(unsigned long))))
 Type 20: 192 array(2,array(3,array(4,pointer(pointer(unsigned long)))))
 Type 21: 8 pointer(void)
 Type 22: 128 struct stud with symbol table 1
 Type 23: 10 array(10,char)
 Type 24: 101 array(101,char)
 Type 25: 25600 array(200,struct stud with symbol table 1)
 Type 26: 12800 array(100,struct stud with symbol table 1)
 Type 27: 19200 array(150,struct stud with symbol table 1)
 Type 28: 32000 array(250,struct stud with symbol table 1)
 Type 29: 28 struct listnode with symbol table 2
 Type 30: 12 struct coordinates with symbol table 3
 Type 31: 8 pointer(struct listnode with symbol table 2)

+++ Symbol table 0 [main]
 letter 0 - 0 type = 2 = char
 alphabet 4 - 29 type = 11 = array(26,char)
 a 32 - 39 type = 5 = unsigned long
 p 40 - 47 type = 12 = pointer(unsigned long)
 q 48 - 55 type = 13 = pointer(pointer(unsigned long))
 r 56 - 63 type = 14 = pointer(pointer(pointer(unsigned long)))
 A 64 - 103 type = 15 = array(5,unsigned long)
 B 104 - 439 type = 17 = array(6,array(7,unsigned long))
 C 440 - 631 type = 20 = array(2,array(3,array(4,pointer(pointer(unsigned long)))))
 vptr 632 - 639 type = 21 = pointer(void)
 FooBar 640 - 767 type = 22 = struct stud with symbol table 1
 BTech 768 - 26367 type = 25 = array(200,struct stud with symbol table 1)
 Dual 26368 - 39167 type = 26 = array(100,struct stud with symbol table 1)
 MTech 39168 - 58367 type = 27 = array(150,struct stud with symbol table 1)
 MS 58368 - 71167 type = 26 = array(100,struct stud with symbol table 1)
 PhD 71168 - 103167 type = 28 = array(250,struct stud with symbol table 1)
 head 103168 - 103175 type = 31 = pointer(struct listnode with symbol table 2)
 tail 103176 - 103183 type = 31 = pointer(struct listnode with symbol table 2)
 Total width = 103184

+++ Symbol table 1 [struct stud]
 roll 0 - 9 type = 23 = array(10,char)
 name 12 - 112 type = 24 = array(101,char)
 yob 116 - 117 type = 4 = short
 CGPA 120 - 123 type = 9 = float
 gender 124 - 124 type = 2 = char
 Total width = 128

+++ Symbol table 2 [struct listnode]
 point 0 - 11 type = 30 = struct coordinates with symbol table 3
 next 12 - 19 type = 31 = pointer(struct listnode with symbol table 2)
 prev 20 - 27 type = 31 = pointer(struct listnode with symbol table 2)
 Total width = 28

+++ Symbol table 3 [struct coordinates]
 x 0 - 3 type = 8 = int
 y 4 - 7 type = 8 = int
 z 8 - 11 type = 8 = int
 Total width = 12
$

