
INDIAN INSTITUTE OF TECHNOLOGY
KHARAGPUR

Stamp / Signature of the Invigilator

EXAMINATION (Mid Semester) SEMESTER (Autumn)

Roll Number Section Name

Subject Number C S 3 1 0 0 3 Subject Name Compilers

Department / Center of the Student Additional sheets

Important Instructions and Guidelines for Students

1. You must occupy your seat as per the Examination Schedule/Sitting Plan.

2. Do not keep mobile phones or any similar electronic gadgets with you even in the switched off mode.

3. Loose papers, class notes, books or any such materials must not be in your possession, even if they are irrelevant to the

subject you are taking examination.

4. Data book, codes, graph papers, relevant standard tables/charts or any other materials are allowed only when instructed

by the paper-setter.

5. Use of instrument box, pencil box and non-programmable calculator is allowed during the examination. However,

exchange of these items or any other papers (including question papers) is not permitted.

6. Write on both sides of the answer script and do not tear off any page. Use last page(s) of the answer script for rough

work. Report to the invigilator if the answer script has torn or distorted page(s).

7. It is your responsibility to ensure that you have signed the Attendance Sheet. Keep your Admit Card/Identity Card on the

desk for checking by the invigilator.

8. You may leave the examination hall for wash room or for drinking water for a very short period. Record your absence

from the Examination Hall in the register provided. Smoking and the consumption of any kind of beverages are strictly

prohibited inside the Examination Hall.

9. Do not leave the Examination Hall without submitting your answer script to the invigilator. In any case, you are not

allowed to take away the answer script with you. After the completion of the examination, do not leave the seat until

the invigilators collect all the answer scripts.

10. During the examination, either inside or outside the Examination Hall, gathering information from any kind of sources or

exchanging information with others or any such attempt will be treated as ‘unfair means’. Do not adopt unfair means and

do not indulge in unseemly behavior.

Violation of any of the above instructions may lead to severe punishment.

Signature of the Student

To be filled in by the examiner

Question Number 1 2 3 4 5 6 7 8 9 10 Total

Marks Obtained

Marks obtained (in words) Signature of the Examiner Signature of the Scrutineer

CS31003 Compilers, Autumn 2024–2025

Mid-Semester Test

18–September–2024 09:00am–11:00am Maximum marks: 80

[Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

Do not write anything on this page.

Questions start from the next page.

1. [LL(1) grammars]

In this exercise, we deal with the language L = {ambm+n | m,n > 0} over the alphabet {a,b}.

(a) A grammar for L is given below. Here, A is the start symbol, and B is another nonterminal symbol.

A → aAb | B

B → bB | ε

Determine the FIRST and FOLLOW values for the nonterminals. Supply justifications. (4)

Justification

FIRST(A) =
{

a, b, ε

}

FIRST(A) = FIRST(aAb)∪FIRST(B) = {a}∪{b,ε}

FIRST(B) =
{

b, ε

}

FIRST(B) = FIRST(bB)∪FIRST(ε) = {b}∪{ε}

FOLLOW(A) =
{

$, b
}

Since A is the start symbol, $ is in FOLLOW(A). Moreover, b is in

FOLLOW(A) because of the production A → aAb.

FOLLOW(B) =
{

$, b
}

No rule has any symbol after B. The production A → B implies that

everything in FOLLOW(A) is in FOLLOW(B).

Prepare the LL(1) parsing table for the grammar given above. (4)

Non- Input symbol

terminal a b $

A A → aAb A → B A → B

B B → bB

B → ε

B → ε

From the parsing table, conclude that the grammar given above is not LL(1). (1)

Solution The entry M[B,b] contains multiple productions.

(b) Propose an LL(1) grammar for the language L. Write below only your grammar and its start symbol

(and nothing else). There is no need to explain how you came up with the grammar. (4)

Solution Introduce a new start symbol S. Then, use the following productions.

S → AB

A → aAb | ε

B → bB | ε

— Page 1 of 11 —

By constructing the FIRST, FOLLOW, and LL(1) parsing tables, prove that your grammar is indeed LL(1).

No credit for any other proof method. (7)

Solution We have

FIRST(S) = FIRST(AB) = FIRST(A) = {a}

FIRST(A) = FIRST(aAb)∪FIRST(ε) = {a,ε}

FIRST(B) = FIRST(bB)∪FIRST(ε) = {b,ε}

FOLLOW(S) = {$}

FOLLOW(A) = {b}∪
(

FIRST(B)−{ε}
)

∪FOLLOW(S) = {b,$}

FOLLOW(B) = FOLLOW(S) = {$}

The LL(1) parsing table is given below.

a b $

S S → AB S → AB S → AB

A A → aAb A → ε A → ε

B B → bB B → ε

Since no entry in the parsing table has multiple productions, the grammar in concern is LL(1).

— Page 2 of 11 —

2. [Grammars for bottom-up parsing]

Consider the following grammar with terminal symbols a,b,c, with nonterminal symbols S,A, and with the

start symbol S.

S → bAc | cAb | bab | ca | A

A → a

(a) Draw the complete LR(0) automaton for the grammar. Name the states as I0, I1, I2, (6)

I0

S bAc.

I7

S bab.

I9

S cAb.

I12

S
S
S
S
S
S
A

.S

.bAc

.cAb

.bab

.ca

.A

.a

I I

S A.a.A

2 3

$

accept

S S b.Ac

I4

S

I

S b.ab
A .a

S
A .a

5

c.Ab
c.a

A

Aa

S
A a.

ca.

S cA.b

S bA.c

I

S
A a.

ba.b

I

I

I

S S.

I1
6

8

10

11
A

b

c

b a

a

b

c

— Page 3 of 11 —

(b) Draw the complete LR(1) automaton for the grammar. Again name the states as I0, I1, I2, For your

convenience, the grammar is given once more below. (7)

S → bAc | cAb | bab | ca | A

A → a

I0

S cAb.

S bab.

I

I

9

12

, $

, $

S bAc.

I7

, $

S
S
S
S
S
S
A

.S

.bAc

.cAb

.bab

.ca

.A

.a

I I

S A.a.A

2 3

$

accept

S S b.Ac

I4

S

I

S b.ab
A .a

S
A .a

5

c.Ab
c.a

A

Aa

S
A a.

ca.

S cA.b

S bA.c

I

S
A a.

ba.b

I

I

I

S S.

I1
6

8

10

11

, $

, $
, $
, $
, $

, $
, $
, $

b

c

, $, $

a

, $
, $

, c

a

, $
, $

, b

, $

A

, $
, c

, b
, $

, $

b

b

c

— Page 4 of 11 —

(c) Consider the SLR(1) parser based on the LR(0) automaton of Part (a). From your automaton, identify

all the states with conflicts. In each case, mention the type of the conflict, and also the input symbol(s) that

lead(s) to that conflict. Write in the space below, not in the picture drawn for Part (a). (4)

Solution We have FOLLOW(S) = {$}, and FOLLOW(A) = {b,c,$}. The states with conflicts are now explained.

I8 [shift-reduce conflict]: Since b ∈ FOLLOW(A), the reduction A → a is applicable on input b. This gives a

conflict with the shift possibility in the item S → ba.b.

I10 [reduce-reduce conflict]: In this state, two reductions can be made. Since $ is common to both FOLLOW(S)
and FOLLOW(A), both reductions are allowed on input $.

(d) Now, consider the (canonical) LR(1) parser based on the LR(1) automaton of Part (b). Explain how all

the conflicts of the SLR(1) parser of Part (c) are resolved by the LR(1) parser. (2)

Solution I8: The reduction A → a is valid for input symbol c alone. Therefore having a b on the input no longer causes a

conflict.

I10: The reduction A → a is valid for input symbol b alone. That is, on input $, only the reduction S → ca is

applicable.

(e) Justify whether the given grammar is LALR(1). (1)

Solution Yes. There was no splitting of states in the LR(1) automaton (with respect to the LR(0) automaton). Therefore

the LR(1) and the LALR(1) parsing tables will be identical.

— Page 5 of 11 —

3. [LALR(1) grammars]

In this exercise, we consider the following grammar. Here, E is the start symbol, L is another nonterminal

symbol, and the four terminal symbols are a, left parenthesis (, right parenthesis), and semicolon : .

E → (L) | a

L → L : E | E

(a) Draw the complete LR(1) automaton for the given grammar. Number the start state as 0 (or I0). (5)

$
accept

E

a

(

a
a

(

(

E E

L L

::

E

))

a

)

— Page 6 of 11 —

(b) Convert the LR(1) automaton of Part (a) to an automaton for LALR(1) parsing. Draw this complete

LALR(1) automaton. Again, number the start state as 0 (or I0). (5)

$
accept

E

a

(

E

L

)

(

:

a

a

E

(

— Page 7 of 11 —

(c) From the automaton of Part (b), construct the LALR(1) parsing table for the given grammar. (5)

Number the rules as follows:

(1) E → (L)

(2) E → a

(3) L → L : E

(4) L → E

Action Go to

State a () : $ E L

0 s23 s45 1

1 accept

23 r2 r2 r2

45 s23 s45 10 67

67 s89 s11

89 r1 r1 r1

10 r4 r4

11 s23 s45 12

12 r3 r3

(d) Work out how the string ((a) : a : (a : a)) can be parsed using the LALR(1) parsing table of Part (c).

Show all the steps (shift and reduce) of parsing, in the following format. Assume that the parse stack stores

only the states. (5)

— Page 8 of 11 —

Parse stack Remaining input Action

0 ((a) : a : (a : a))$ Shift (
0 45 (a) : a : (a : a))$ Shift (
0 45 45 a) : a : (a : a))$ Shift a

0 45 45 23) : a : (a : a))$ Reduce E → a

0 45 45 10) : a : (a : a))$ Reduce L → E

0 45 45 67) : a : (a : a))$ Shift)
0 45 45 67 89 : a : (a : a))$ Reduce E → (L)
0 45 10 : a : (a : a))$ Reduce L → E

0 45 67 : a : (a : a))$ Shift :

0 45 67 11 a : (a : a))$ Shift a

0 45 67 11 23 : (a : a))$ Reduce E → a

0 45 67 11 12 : (a : a))$ Reduce L → L : E

0 45 67 : (a : a))$ Shift :

0 45 67 11 (a : a))$ Shift (
0 45 67 11 45 a : a))$ Shift a

0 45 67 11 45 23 : a))$ Reduce E → a

0 45 67 11 45 10 : a))$ Reduce L → E

0 45 67 11 45 67 : a))$ Shift :

0 45 67 11 45 67 11 a))$ Shift a

0 45 67 11 45 67 11 23))$ Reduce E → a

0 45 67 11 45 67 11 12))$ Reduce L → L : E

0 45 67 11 45 67))$ Shift)
0 45 67 11 45 67 89)$ Reduce E → (L)
0 45 67 11 12)$ Reduce L → L : E

0 45 67)$ Shift)
0 45 67 89 $ Reduce E → (L)
0 1 $ Accept

— Page 9 of 11 —

4. [Syntax-directed translation]

Consider the expression grammar of a programming language, involving only the division operator /.

S → E

E → E / T | T

T → num | num.num

The start symbol is S. This grammar deals with two kinds of operands: (i) integers consisting of sequences

of digits, which are indicated by the token num, and (ii) floating-point numbers which are indicated by

the token num.num. The semantics of the grammar directs that the division operation must be interpreted

differently, depending on whether it is an integer division or a floating-point division. For example, integer

division gives 5/4 = 1, whereas floating-point division gives 5.0/4.0 = 1.25.

The programming language allows expressions with both integers and floating-point numbers. The language

semantics direct that expressions with mixed operand types should be promoted to floating-point expressions

throughout. For example, the expression 5/2 /2.0 (assuming left associativity for division) evaluates to 1.25.

Here, both the divisions are to be carried out as floating-point divisions, although the first division 5/2 has

integer operands only. On the other hand, the integer-only expression 5/2 /2 evaluates to 1.

(a) In what follows, you write an SDD to implement the aforementioned semantics in the grammar for

evaluating expressions (involving divisions only). Use three attributes in the SDD as explained below.

(i) A synthesized boolean attribute isF (with two possible values true and false) which indicates if any

part of an expression has a floating-point operand.

(ii) An inherited attribute etype (with two possible values int and float) which stores the type of the

subexpression. Note that the etype of a subexpression depends on the isF values of all operands.

(iii) A synthesized attribute val which stores the computed value of each subexpression. Note that the

computation of val for a subexpression depends on the etype of that subexpression. Assume that

integer-by-integer division is implemented by idiv, and float-by-float division by fdiv. It is not

possible to carry out integer-by-float or float-by-integer divisions. However, there exists a function

ItoF(x) that converts an integer x to a floating-point number, and returns that floating-point number.

Fill in the blanks in the following table to implement these semantic rules. Here, annotating the parse tree

needs three passes. The first pass computes the isF values by a bottom-up traversal of the parse tree. The

second pass computes the etype values in a top-down fashion. The third pass computes val bottom up. (12)

Production Semantic rule

S → E E.etype = if (E.isF) then float, else int

S.val = E.val

E → E1 / T E.isF = if (E1.isF or T.isF) then true, else false

E1.etype = E.etype

T.etype = E.etype

E.val = if (E.etype is int) then E1.val idiv T.val, else E1.val fdiv T.val

E → T E.isF = T.isF

T.etype = E.etype

E.val = T.val

Continued to the next page

— Page 10 of 11 —

T → num T.isF = false

T.val = if (T.etype is int) then num.val, else ItoF(num.val)

T → num.num T.isF = true

T.val = num.num.val

(b) Given the input expression 7/2/2.0, construct and draw the parse tree and the dependency graph, and

annotate the parse tree, in the context of the SDD of Part (a). (8)

Solution In the following figure, the edges of the parse tree are shown as dashed lines. The edges of the dependency

graph are shown as solid directed lines. The attributes with values are shown near the parse-tree nodes.

S

/

/

isF = true

isF = false

etype = float

etype = float

etype = float
val = 3.5

val = 2.0

val = 1.75

val = 2.0

val = 2

val = 1.75

val = 7.0

val = 7

num

num

num.num
val = 2.0

isF = false isF = false

isF = false isF = true

etype = float

etype = float

val = 7.0

etype = float

T

E

E

T

E

T

— Page 11 of 11 —

For Rough Work

— Extra Page 12 —

For Rough Work

— Extra Page 13 —

For Rough Work

— Extra Page 14 —

