Computer Science and Engineering Department, IIT Kharagpur
CS31003 Compilers, 3" year CSE, 5" Semester (Class Test 1)
Time limit: 1 hour Date: 30™ Aug, 2024 Max Marks: 20

Roll No: Name:

Answer all the questions. Take and state suitable assumptions, if needed.
No clarifications will be provided during the examination.

1. Parse the string aabbde by executing the non-deterministic recursive descent parser under the grammar
specified below. Apply the productions in the increasing order of the Rule #. Clearly show the functions
invoked by the parser and the backtracking steps (if any). No need to write the codes for the functions.

Rule # Production
1. S — Aa
2. S — Ce
3. A — aaB
4. A — aaba
5. B — bbb
6. C — aaD
7. D — bbd
[S]
Ans:
g gjﬁfj,ﬂ < %\)}%% ZL ﬂ% é'/
/\ ’ : / \ o g
A A C e
b :
\}‘vzi 49/ a(kﬁb Ade //A:\\
/\\ (bnw‘imf/k) /L o D ’\
vy b R ﬁ(\l
g Al
ﬁ/ > \éi jb deo
N
v“‘/ > (he tha Fade)
S
¥ \ ;;AL e
A ~
e

2. Consider the following grammar with terminal symbols {a, b, d, g, h}, and nonterminals {S, 4, B, C}.
Here, § is the start symbol. The productions of the grammar are given below. The bodies of two productions,
called Bodyl and Body2, are missing.

S — Bodyl | ChB | Ba
A — da | Body2
B—gle

C— hle

The following table lists the FIRST and FOLLOW of the nonterminals.

FIRST FOLLOW
S | {dghbace |{$
A {d, g, h, €} {h, g, 8}
B {g, €} FOLLOW(S) U {a} U FIRST(C) U FOLLOW(4)
c {h, €} FIRST(B) U FOLLOW(S) U FOLLOW(A4) U {b}

Using this table, derive the missing bodies Body1 and Body2 of the two productions given above. Show all
the steps of your derivation.

[5]

Ans:
A — BC [First of 4 includes g and 4, where First of B is g and First of C is g/
S — ABC [First of S includes g, 4, which infers B, C in production body. First of S includes d,
which infers A4 in production body. Follow of B includes First of C, Follow of 4 is {d, g, A, €}, and
does not include Follow(S). This decides the order ABC.]

3. (a) Consider a programming language, which supports the following tokens.

ID: Identifier without numeric digits

ID_N: Identifier with numeric digits

INT: Signed integers without decimal point

NE_REAL: Signed real numbers with decimal points but without exponents
E_REAL : Signed real numbers with decimal points and exponents
Keywords: int, float

Punctuator: ;

OP: operators such as =

WS: White spaces

Write down the regular definitions of the tokens INT, NE_REAL, E REAL, ID, ID_N.
2]

Ans:
INT : digit(digit)*[.digit]?(digit)*[E[+/-]?digit] ?digit™*
NE _REAL : (epsilon/+/-)digit(digit)*[.digit]?(digit)*
E_REAL : (epsilon/+/-)digit(digit)*[.digit]?(digit)*[E[+/-]?digit]?digit*
ID: letter+
ID_N: letter(letter+digit) *

For the code snippet below, write down the stream of tokens generated by the lexical analyzer. Write each
input token as <token name, lexeme>.

int var = 250e-2;
float var2 = -20.45;

1]
Ans:
<Keyword, int><ws><ID,var><=><E REAL, 250e-2><Punctuator, ;>
<Keyword, float><ws><ID N,var2><=><NE REAL, -20.45><Punctuator, ;>

(b) Consider a programming language L which supports three tokens T1, T2 and T3 defined by the regular
expressions T1 = a?(b|c)*a, T2 = b?(a|lc)*b, T3 = c?(bla)*c. Consider a string w = accbbbccaabc in the
language L. Arrange these tokens in such a way that the tokens generate the string w, satisfying the
following two conditions. (i) The number of tokens should be minimized, and (ii) the tokens cannot be
repeated. [It is not necessary that you have to use all these three tokens.]

[3]

Ans:
T1 will generate acchbbcca and T3 will generate abce. So the sequence of tokens are T1T3.

4. (a) Consider the following grammar with terminal symbols {a, b, ¢, d} and nonterminal symbols {X, Y},

where X is the start symbol. Eliminate left recursion from the grammar, and write down the transformed
grammar.

X—Ya|Xa|c
Y — Yb | Xb | d

2]
Ans:

X—Ya| Xa| c ... Eliminate left recursion

X—YaX | X

X —aX |€

Y—>Yb|Xb|d ... Substitute with X productions here
Y— Yb|YaX'b|cX'b|d ... Eliminate left recursion now

Y — cX'bY' | dY

Y — bY' | aX'bY' | €

(i1) Final productions:

X—>YaX | X
X —aX |€

Y — cX'bY | dY

Y — bY | aXbY | €

(b) Prove or disprove with justification: The following grammar is LL(1). Do not construct the parsing
table. Here, S is the only nonterminal symbol.

S — aSbS | bSaS | €
2]
Ans:

Follow(S)={a, b, $}
First(aShS)={a} overlaps with Follow(s)

