
Department of Computer Science and Engineering
Indian Institute of Technology Kharagpur

Compilers Laboratory: CS39003
3rd Year CSE: 5th Semester

Assignment - 3: Lexer for tinyC Marks: 100

Assign Date: August 12, 2024 Submit Date: 23:55, August 26, 2024

1 Preamble – tinyC

This assignment follows the lexical specification of C language from the International

Standard ISO/IEC 9899:1999 (E). To keep the assignment within our required scope,

we have chosen a subset of the specification as given below. We shall refer to this

language as tinyC and subsequently (in a later assignment) specify its grammar from

the Phase Structure Grammar given in the C Standard.

The lexical specification quoted here is written using a precise yet compact notation

typically used for writing language specifications. We first outline the notation and then

present the Lexical Grammar that we shall work with.

2 Notation

In the syntax notation used here, syntactic categories (non-terminals) are indicated by

italic type, and literal words and character set members (terminals) by bold type. A

colon (:) following a non-terminal introduces its definition. Alternative definitions are

listed on separate lines, except when prefaced by the words ''one of''. An optional

symbol is indicated by the subscript ''opt'', so that the following indicates an optional

expression enclosed in braces.

{ expressionopt }

3 Lexical Grammar of tinyC

1. Lexical Elements

token:

keyword

identifier

constant

string-literal

punctuator

2. Keywords

keyword: one of
auto enum restrict unsigned

break extern return void

case float short volatile

char for signed while

const goto sizeof Bool

continue if static Complex

default inline struct Imaginary

do int switch

double long typedef

else register union

3. Identifiers

identifier:

identifier-nondigit

identifier identifier-nondigit

identifier digit

1

identifier-nondigit: one of
a b c d e f g h i j k l m

n o p q r s t u v w x y z

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

digit: one of
0 1 2 3 4 5 6 7 8 9

4. Constants

constant:

integer-constant

floating-constant

character-constant

integer-constant:

digit

integer-constant digit

floating-constant:

fractional-constant exponent-partopt
digit-sequence exponent-part

fractional-constant:

digit-sequenceopt . digit-sequence

digit-sequence .

exponent-part:

e signopt digit-sequence

E signopt digit-sequence

sign: one of
+ –

digit-sequence:

digit

digit-sequence digit

character-constant:

' c-char '

c-char:

any character except

the single-quote ', backslash \, or new-line character

escape-sequence

escape-sequence: one of
\' \'' \? \\
\a \b \f \n \r \t \v

5. String literals

string-literal:

'' s-char-sequenceopt ''

s-char-sequence:

s-char

s-char-sequence s-char

s-char:

any character except

the double-quote '', backslash \, or new-line character

escape-sequence

2

6. Punctuators

punctuator: one of

[] () { } . ->

++ -- & * + - ~ !

/ % << >> < > <= >= == != ^ | && ||

? : ; ...

= *= /= %= += -= <<= >>= &= ^= |=

, #

7. Comments

(a) Multi-line Comment

Except within a character constant, a string literal, or a comment, the char-

acters /* introduce a comment. The contents of such a comment are exam-

ined only to identify multibyte characters and to find the characters */ that

terminate it. Thus, /* ... */ comments do not nest.

(b) Single-line Comment

Except within a character constant, a string literal, or a comment, the char-

acters // introduce a comment that includes all multibyte characters up to,

but not including, the next new-line character. The contents of such a com-

ment are examined only to identify multibyte characters and to find the

terminating new-line character.

You should maintain a symbol table keeping records of the token names (say,

constant, identifier etc), and the respective lexemes.

4 The Assignment

1. Write a flex specification for the language of tinyC using the above lexical gram-

mar. Name of your file should be ass3 roll1 roll2.l. The ass3 roll1 roll2.l

should not contain the function main().

2. Write your main() (in a separate file ass3 roll1 roll2.c) to test your lexer.

3. Prepare a Makefile to compile the specifications and generate the lexer.

4. Prepare a test input file ass3 roll1 roll2 test.c that will test all the lexical rules

that you have coded.

5. The execution of your lexical analyzer should print (a) the stream of tokens in the

form of 〈tokenname, lexeme〉 (such as 〈constant, 14〉, 〈identifier, x〉 etc),

and (b) the symbol table.

6. Prepare a tar-archive with the name ass3 roll1 roll2.tar containing all the above

files and upload to Moodle.

5 Credits

1. Flex Specifications: 60

2. Main function and Makefile: 20 [15+5]

3. Test file: 20

3

