
CS39003 Compilers Laboratory, Autumn 2024–2025
Assignment No: 0
Date: 22-Jun-2024

__

Warm-up Assignment

This assignment is meant to give you a flavor of how compilers work. However, you must not use any compiler-specific tool.
Develop a naive C/C++ implementation based on your programming experience so far (PDS, Algo, SPL, SE). You will later see
how a formal approach helps you simplify your life considerably.

Your task in this assignment is to build a simple calculator involving only positive integer operands and the arithmetic operators +
and *. The usual rules of associativity and precedence apply to these expressions. The user is allowed to supply disambiguating
parentheses in the expression. Here is an example of a type of expressions that your program will be able to handle.

4 + (14 * (6 + 12 + 2 * 16) + 9) * (11*(3+21) + 15*8*13) * 19 + 5 * 18 + (1+10*(17 + 7)) + 20

This expression evaluates to 24571459.

Notice the following points.

• At the beginning of your program, the user enters an expression that is to be read as a string.
• At the end, your program should print the final numeric value of the expression, and exit.
• The integers in the expression may contain multiple digits.
• The user may use any number of spaces (including none) at all allowed places (but not inside an operand).
• The user may add unnecessary parentheses, like in the case of (1+10*(17 + 7)).
• Your program should detect whenever the user supplies an invalid arithmetic expression.

For the algorithm, you may use the following idea. Write two mutually recursive functions evalsum() and evalterm(). The first of
these functions assumes that the expression is a sum of one or more terms. It attempts to locate the summands (terms) by
identifying the outermost + signs (marked in red in the above example). The second function is called for each summand. This
function in turn attempts to find the outermost * signs (marked in green for one term in the example above). Each factor in the
term is again an expression (possibly parenthesized).

That’s it! Simple as it may sound, writing a naive code even for a small problem like this would be rather involved. Let it
be. You will later learn to ease that process anyway.

Let’s start our journey.

