
CS69001 Computing Laboratory – I

Assignment No: B3

Date: 21–August–2019

Let G = (V,E) be a connected undirected graph, and let s, t be two distinct vertices of G. Each vertex v ∈V

stores a positive integer l(v). Two robots are initially sitting at vertices s and t. They then enter a loop. Let u

and v be the current positions of the two robots (initially u = s and v = t). The robots read the two integers

l(u) and l(v). The first robot then moves along a path in G of length equal to l(u), starting from u. Likewise,

the second robot starts from v, and moves along a path in G of length equal to l(v). If the new positions of

the robots are u′ and v′, we say that the robots move from (u,v) to (u′,v′) in one step or iteration. Your task

is to find out whether the two robots, starting initially from s and t, can switch their positions, that is, can

reach t and s simultaneously after the same number of steps. Notice that in a single step, no path of either

robot is allowed to contain repeated vertices. However, the paths of each robot in different steps (iterations)

may contain repeated vertices. If in some step, a path of the desired length does not exist, then the problem

definitely has no solution. Assuming that the problem is solvable, we ask two questions.

1. What is the minimum number of steps (that is, iterations) needed for the robots to switch positions?

2. The effort of each robot is the sum of the lengths of the paths it traverses in all the iterations. What

is the minimum combined effort (the sum of the efforts of the two robots) needed for the robots to

change their positions from (s, t) to (t,s)?

You consider two situations. Let (u,v) be the positions of the robots at the end of an iteration.

(i) It is allowed to have u = v at the end of one or more iterations.

(ii) It is never allowed to have u = v.

Part 1: Declare and print a graph

Define a suitable data type to store a graph G = (V,E) (directed or undirected) in the adjacency-list format.

The structure should store the number n of vertices of G, the number m of edges of G, and n headers to the

linked lists of neighbors of the vertices. In this assignment, each vertex v is needed to store the path length

l(v), so your graph should also contain an integer array of size n. Assume that V = {0,1,2, . . . ,n−1}.

Write a function prngraph to print a graph G in the format shown in the sample output. You first print n and

m. Then, for each vertex v, you print its weight followed by its neighbors.

Part 2: Generate the one-step reachability graph GR

The user enters the input undirected graph G = (V,E) in the main function. From this, you generate a graph

GR = (VR,ER) as follows. We have VR =V . Let u ∈VR =V . If a robot sits at u at some point of time, it can

reach a vertex v from u in one step if there is a u,v path of length l(u). If and only if this is the case, include

the edge (u,v) in ER. For each v ∈ V , copy l(v) from G to GR. Write a function genrgraph to generate GR

from G. Notice that GR is a directed graph (even though G is undirected).

Part 3: Generate the one-step simultaneous reachability graph GS

You need to track the simultaneous movements of the two robots. This is captured by a bigger graph

GS = (VS,ES), and can be generated from GR. Take VS = VR ×VR = V ×V . Renumber the pair (u,v) of

vertices of GS as nu+ v, so VS = {0,1,2, . . . ,n2 − 1}. Include the edge ((u,v),(u′,v′)) in ES if and only if

(u,u′) ∈ ER and (v,v′) ∈ ER (so ES is essentially ER ×ER). Finally, store l(u,v) in GS as l(u)+ l(v). Write a

function gensgraph to generate GS from GR. Notice that GS is again a directed graph.

Part 4: Minimize the number of steps

The initial position of the robots is (s, t), and their final position is (t,s). Run a BFS in GS from (s, t) . If

(t,s) is ever reached, the minimum number of steps is the level of (t,s) in the BFS tree. Print the unique

— Page 1 of 4 —

path from (s, t) to (t,s) in the BFS tree, its length, and its cost (combined total effort of the robots on this

path). If (t,s) is never reached from (s, t), then the problem has no solution; report that.

Your BFS function should be able to handle both the situations (i) and (ii) described above. We start with

the assumption that s 6= t. In situation (i), your BFS is allowed to visit nodes (u,u). In situation (ii), you

initially mark all nodes (u,u) as visited so you never try to revisit them in the BFS loop. Pass a flag to your

BFS function to indicate which situation you are dealing with.

Part 5: Minimize the total combined effort

While BFS traversal can minimize the number of steps, it may fail to give the correct solution when the goal

is to minimize the total combined effort of the robots. You need to run a single-source-shortest-path (SSSP)

algorithm in GS with (s, t) acting as the source. Implement Dijkstra’s algorithm to this end. This algorithm

requires edges to be weighted, but we stored weights in vertices. This is not a problem. For a directed

edge e = ((u,v),(u′,v′)) ∈ ES, the weight is weight(e) = l(u,v) = l(u)+ l(v), and is dependent solely on the

starting vertex (u,v).

As in Part 4, pass a flag to your SSSP function to indicate which of the situations (i) and (ii) you are dealing

with. In situation (ii), you do not consider vertices of the form (u,u) even though GS stores information

about these vertices.

After you find a shortest (s, t)→ (t,s) path, print its cost and also its length (number of steps). If in the end,

the distance of (t,s) from (s, t) remains ∞, then there is no (s, t)→ (t,s) path in GS.

The main() function

• Read G from the user. The user enters n, m, the n path lengths, and the undirected edges (u,v) of G,

in that order. It is the duty of the user to supply data for a connected graph. Print G.

• Generate GR from G. Print GR.

• Generate GS from GR. Print GS.

• Read s and t from the user. Again assume that the user supplies s 6= t.

• Call you BFS function in both situations (i) and (ii), and report the results.

• Call you SSSP function in both situations (i) and (ii), and report the results.

Submit a single C/C++ source file. Do not use global/static variables. You may use STL queues and stacks.

— Page 2 of 4 —

Sample outputs
n = 5

m = 4

+++ Path lengths: 3 1 3 2 1

+++ Edges:

(2, 4) (0, 3) (1, 2) (0, 1)

+++ Input graph

Number of vertices: 5

Number of edges : 4

0 (3) -> 1, 3

1 (1) -> 0, 2

2 (3) -> 1, 4

3 (2) -> 0

4 (1) -> 2

+++ Reachability graph

Number of vertices: 5

Number of edges : 6

0 (3) -> 4

1 (1) -> 0, 2

2 (3) -> 3

3 (2) -> 1

4 (1) -> 2

+++ Simultaneous reachability graph

Number of vertices: 25

Number of edges : 36

0 (6) -> 24

1 (4) -> 22, 20

2 (6) -> 23

3 (5) -> 21

4 (4) -> 22

5 (4) -> 14, 4

6 (2) -> 12, 10, 2, 0

7 (4) -> 13, 3

8 (3) -> 11, 1

9 (2) -> 12, 2

10 (6) -> 19

11 (4) -> 17, 15

12 (6) -> 18

13 (5) -> 16

14 (4) -> 17

15 (5) -> 9

16 (3) -> 7, 5

17 (5) -> 8

18 (4) -> 6

19 (3) -> 7

20 (4) -> 14

21 (2) -> 12, 10

22 (4) -> 13

23 (3) -> 11

24 (2) -> 12

s = 0

t = 2

+++ Minimum number of steps

--- Allowing robots to share a node

Steps: (0,2) (4,3) (2,1) (3,0) (1,4) (2,2) (3,3) (1,1) (2,0)

Number of steps = 8

Total effort = 32

--- Disallowing robots to share a node

Steps: (0,2) (4,3) (2,1) (3,2) (1,3) (0,1) (4,2) (2,3) (3,1) (1,2) (0,3) (4,1) (2,0)

Number of steps = 12

Total effort = 48

+++ Minimum total combined effort

--- Allowing robots to share a node

Steps: (0,2) (4,3) (2,1) (3,0) (1,4) (2,2) (3,3) (1,1) (2,0)

Number of steps = 8

Total effort = 32

--- Disallowing robots to share a node

Steps: (0,2) (4,3) (2,1) (3,2) (1,3) (0,1) (4,2) (2,3) (3,1) (1,2) (0,3) (4,1) (2,0)

Number of steps = 12

Total effort = 48

--

— Page 3 of 4 —

n = 5

m = 5

+++ Path lengths: 2 1 3 1 3

+++ Edges:

(0, 4) (1, 3) (0, 2) (0, 1) (1, 2)

+++ Input graph

Number of vertices: 5

Number of edges : 5

0 (2) -> 1, 2, 4

1 (1) -> 2, 0, 3

2 (3) -> 1, 0

3 (1) -> 1

4 (3) -> 0

+++ Reachability graph

Number of vertices: 5

Number of edges : 12

0 (2) -> 1, 2, 3

1 (1) -> 0, 2, 3

2 (3) -> 3, 4

3 (1) -> 1

4 (3) -> 1, 2, 3

+++ Simultaneous reachability graph

Number of vertices: 25

Number of edges : 144

0 (4) -> 18, 17, 16, 13, 12, 11, 8, 7, 6

1 (3) -> 18, 17, 15, 13, 12, 10, 8, 7, 5

2 (5) -> 19, 18, 14, 13, 9, 8

3 (3) -> 16, 11, 6

4 (5) -> 18, 17, 16, 13, 12, 11, 8, 7, 6

5 (3) -> 18, 17, 16, 13, 12, 11, 3, 2, 1

6 (2) -> 18, 17, 15, 13, 12, 10, 3, 2, 0

7 (4) -> 19, 18, 14, 13, 4, 3

8 (2) -> 16, 11, 1

9 (4) -> 18, 17, 16, 13, 12, 11, 3, 2, 1

10 (5) -> 23, 22, 21, 18, 17, 16

11 (4) -> 23, 22, 20, 18, 17, 15

12 (6) -> 24, 23, 19, 18

13 (4) -> 21, 16

14 (6) -> 23, 22, 21, 18, 17, 16

15 (3) -> 8, 7, 6

16 (2) -> 8, 7, 5

17 (4) -> 9, 8

18 (2) -> 6

19 (4) -> 8, 7, 6

20 (5) -> 18, 17, 16, 13, 12, 11, 8, 7, 6

21 (4) -> 18, 17, 15, 13, 12, 10, 8, 7, 5

22 (6) -> 19, 18, 14, 13, 9, 8

23 (4) -> 16, 11, 6

24 (6) -> 18, 17, 16, 13, 12, 11, 8, 7, 6

s = 0

t = 2

+++ Minimum number of steps

--- Allowing robots to share a node

Steps: (0,2) (3,4) (1,1) (2,0)

Number of steps = 3

Total effort = 11

--- Disallowing robots to share a node

Steps: (0,2) (2,4) (4,1) (2,0)

Number of steps = 3

Total effort = 15

+++ Minimum total combined effort

--- Allowing robots to share a node

Steps: (0,2) (3,3) (1,1) (2,0)

Number of steps = 3

Total effort = 9

--- Disallowing robots to share a node

Steps: (0,2) (1,3) (0,1) (2,0)

Number of steps = 3

Total effort = 10

— Page 4 of 4 —

