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Two pirates Punto and Qunto are going to retire in two private islands. Before that, they want to divide

their collected treasure equally between them. The treasure consists of N items costing a0,a1,a2, . . . ,aN−1

(positive integers). Let S =
N−1

∑
i=0

ai. Ideally, each pirate should get treasure of worth S/2. But the items cannot

be broken into pieces, so an exact amount of S/2 may be unachievable from the given items (S/2 need not

even be an integer). Let T = ⌊S/2⌋. Punto is happy if he gets treasure of worth P 6 T such that P is as large

as possible. In this assignment, you help the pirates by computing Punto’s maximum possible share P.

Part 1: Exhaustive search

Write a recursive function exhs to compute and return P. For each i = 0,1,2, . . . ,N−1, take two decisions:

include/exclude ai in Pinto’s treasure. Recursively, solve the two subproblems, and when the two calls finish,

return the maximum of the two returned values. Notice that a collection of worth larger than T is not a valid

solution, so consider only those choices whose total costs are 6 T .

Part 2: Hash-table utilities

We are going to use a hash table H for memoizing intermediate partial solutions generated during the

exhaustive search. Suppose that items a0,a1,a2, . . . ,ai are so far considered, and a subcollection of these

items is of worth σ . Let f lag be a Boolean value standing for whether ai is included in the subcollection

corresponding to σ . The hash table stores triples of the form (i,σ , f lag). Use the hash function

h(i,σ) = 100003i+103σ (mod s),

where s is the size of the hash table H. Notice that the Boolean flag is not incorporated in the hash function.

Its only purpose is to aid the construction of an actual solution in Part 4.

The hash table H should be capable of storing s = NT triples. Use open addressing with linear probing.

Write the following functions:

(a) htinit(s) to create an empty hash table of storage capacity s,

(b) htsearch(H,i,σ) to determine whether (i,σ , f lag) already resides in the hash table H for some

f lag (notice that the hash function does not depend on the flag; the return value can be 0 on failure,

or k+1 if (i,σ) is found at index k in H), and

(c) htinsert(H,i,σ,flag) to insert a triple (i,σ , f lag) to H (this function may assume that no triple

storing (i,σ) resides in H before the insertion).

Here, you do not delete entries from the hash table, so you do not need to write a delete function for H.

Part 3: Search using hash tables

Write a hash-based search function hashs to compute and return Punto’s share P. This is similar to the

exhaustive search of Part 1 with the exception that the hash table H dictates the pruning of unnecessary

search. The function takes as input an index i ∈ {0,1,2, . . . ,n − 1} and a sum σ of a subcollection of

a0,a1,a2, . . . ,ai−1. The task of the call is to exercise two options:

(a) Exclude ai: In this case, the recursive call will be on (i+1,σ), and the Boolean f lag will be 0.

(b) Include ai: In this case, the recursive call will be on (i+1,σ +ai), and f lag will be 1.

In the exhaustive search of Part 1, we blindly make both the calls. Now, we make the calls conditionally.

In each of the two cases, we first search whether the current partial solution (that is, (i,σ) or (i,σ + ai)
depending upon the case) already resides in the hash table H. If the search succeeds, we know that some

other invocation of the function has already encountered this configuration, so there is no point re-exploring
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from this point. If the search fails, then this is a new configuration (for the moment), so we insert (i,σ ,0) or

(i,σ +ai,1) to H depending upon which case it is, and make the recursive call. Let the two returned values

be v0,v1. If a recursive call is not made, we take v0 =−1 or v1 =−1. Finally, max(v0,v1) is returned.

The following figure demonstrates the repetition of (i,σ) pairs in the search. Suppose that the first three item

costs are a0 = 1, a1 = 3, and a2 = 2. The left occurrence of 2,3 corresponds to a1, and the right occurrence

to a0 + a2. These two solutions are therefore achieved in two different ways. But since i and the partial

sum σ are the same for these, the trees under these two nodes will be identical. The existence of (2,3) in H

indicates that some invocation of the function has already explored this subtree. A second exploration is not

needed irrespective of whether this subtree contains an optimal solution or not.
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Part 4: Compute the solution

Write a function findsol that, given A,N, the maximum share P computed by hashs, and the hash table

H as input, constructs a solution (a subcollection of the treasure items) that realizes the share P.

The main() function

• Read N and the item costs a0,a1,a2, . . . ,aN−1 from the user.

• Call exhs, and report the maximum share P.

• Call hashs, and report the maximum share P.

• Call findsol to print an optimal subcollection achieving the total value P of Punto’s share.

Submit a single C/C++ source file. Do not use global/static variables.
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Sample output

In a run of the first sample, you will probably not notice the difference between the running times of exhs

and hashs.

N = 16

97926 95846 33555 87806 50758 26751 91574 52884 26587 42497 84104 64793

52405 87805 98738 15616

S = 1009645

T = 504822

+++ Exhaustive search

Maximum P = 504804

+++ Search with a hash table

Maximum P = 504804

Solution: 33555 + 26751 + 91574 + 52884 + 84104 + 64793 + 52405 + 98738

For the following larger sample, the effectiveness of hash-based pruning clearly shows up. On our laptop

computer, exhs takes about 40 seconds, whereas hashs and findsol together finish within 3 seconds.

N = 32

38604 41509 61406 74764 49823 27743 62064 94358 16331 15622 79520 47685

16574 10472 72027 42382 84860 43494 72273 78514 80934 19805 21113 46332

65014 53259 50231 69886 60362 37064 42250 95318

S = 1671593

T = 835796

+++ Exhaustive search

Maximum P = 835796

+++ Search with a hash table

Maximum P = 835796

Solution: 47685 + 72027 + 42382 + 84860 + 72273 + 78514 + 80934 + 19805 +

21113 + 65014 + 53259 + 60362 + 42250 + 95318
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