
CS21003 Algorithms – I, Autumn 2012–13

Class test 2

Maximum marks: 20 Time: 15-Nov-2012 Duration:1 hour

Roll no: Name:

[Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

1. Let S = a0a1a2 . . . an−1 andT = b0b1b2 . . . bm−1 be two strings of lengthsn andm, respectively. The
Levenshtein distance (or edit distance) L(S, T ) betweenS andT is the minimum number of elementary
edit operations needed to convertS to T . Three types of elementary edit operations are permitted: insertion
of a character (likealgorithm ⇒ alogorithm), deletion of a character (alogorithm ⇒ logorithm), and
replacing one character by another character (logorithm⇒ logarithm).

For computingL(S, T ), build a two-dimensional tableL[i, j] for −1 6 i 6 n − 1 and−1 6 j 6 m − 1.
The entryL[i, j] stands for the Levenshtein distance between the prefixesS[0 . . . i] andT [0 . . . j]. Write a
Θ(nm)-time algorithm to populate the entire tableL in a suitable sequence. The entryL[n−1,m−1] gives
the desired distanceL(S, T ). (Hint: ExpressL[i, j] in terms ofL[i− 1, j], L[i, j − 1] andL[i− 1, j − 1].) (10)

Solution The boundary conditions areL[i,−1] = i + 1 for all i > −1 (we need to makei + 1 deletions inS[0 . . . i]),
andL[−1, j] = j + 1 for all j > −1 (j + 1 insertions inS[0 . . .− 1] = ǫ). For i, j > 0, we have

L[i, j] = min































































L[i− 1, j] + 1,
[

Converta0a1 . . . ai−1ai to b0b1 . . . bjai, and deleteai.
]

L[i, j − 1] + 1,
[

Converta0a1 . . . ai to b0b1 . . . bj−1, and appendbj .
]

[

If ai = bj , convertinga0a1 . . . ai−1ai to b0b1 . . . bj−1bj is the same

as convertinga0a1 . . . ai−1 to b0b1 . . . bj−1, sot = 0 in this case.
L[i− 1, j − 1] + t.

If ai 6= bj , then converta0a1 . . . ai−1ai to b0b1 . . . bj−1ai,

and replaceai by bj , sot = 1 in this case.
]

To start with, we populate the topmost row and the leftmost column of L using the boundary conditions.
Subsequently, we populate the rest of the table in the row-major (or column-major) fashion. This ensures that
whenL[i, j] is computed, the valuesL[i− 1, j], L[i, j − 1] andL[i− 1, j − 1] are already available.

The pseudocode of an algorithm for computingL(S, T ) is given below.

1. InitializeL[i,−1] = i+ 1 for i = −1, 0, 1, 2, . . . , n− 1.
2. InitializeL[−1, j] = j + 1 for j = 0, 1, 2, . . . ,m− 1.
3. Fori = 0, 1, 2, . . . , n− 1, repeat:{
4. Forj = 0, 1, 2, . . . ,m− 1, repeat:{
5. If (ai = bj), sett = 0, else sett = 1.

6. SetL[i, j] = min
(

L[i− 1, j] + 1, L[i, j − 1] + 1, L[i− 1, j − 1] + t
)

.

7. } /* End of for j */
8. } /* End of for i */
9. ReturnL[n− 1,m− 1].

— Page 1 of 2 —



2. LetS andT be strings as in Exercise 1. We are given a boundl on the number of errors. We want to compute
all positionsi in S, for whichS[i . . . i + k] (for somek > 0) is at a Levenshtein distance6 l from T . This
problem is known asapproximate string matching, and has applications in spell checking, DNA sequence
matching in computational biology, and identifying a multimedia file from a (possibly corrupted) snapshot.

Explain how you can modify the algorithm of Exercise 1 in order to find all the approximate matches (that
is, matches with6 l errors) ofT in S. The modified algorithm should run inΘ(nm) time. (10)

Solution The algorithm of Exercise 1 requires two modifications for solving the approximate string matching problem.

1. Change in boundary conditions: Since the approximate match ofT can start from any location inS, the
characters preceding any matching location do not count in the distance calculation, so we set the leftmost
column asL[i,−1] = 0 (instead ofi+1) for all i. The other boundary condition (the topmost row) remains the
same.

2. Remembering the edit sequences: For i, j > 0, we need to remember which of the three arguments gives the
minimum value during the computation ofL[i, j]. We need to track back to the beginning of the match using
these markers.

The modified algorithm is given below.

1. Fori = −1, 0, 1, 2, . . . , n− 1, setL[i,−1] = 0.
2. Forj = 0, 1, 2, . . . ,m− 1, setL[−1, j] = j + 1.
3. Fori = 0, 1, 2, . . . , n− 1, repeat:{
4. Forj = 0, 1, 2, . . . ,m− 1, repeat:{
5. If (ai = bj), sett = 0, else sett = 1.
6. Letu = L[i− 1, j] + 1, v = L[i, j − 1] + 1 andw = L[i− 1, j − 1] + t.
7. SetL[i, j] = min(u, v, w).
8. If (L[i, j] = u), setE[i, j] = ↑ ,
9. else if(L[i, j] = v), setE[i, j] =← ,

10. else setE[i, j] =տ .
11. } /* End of for j */
12. If (L[i,m− 1] 6 l) {
13. Initializei′ = i andj′ = m− 1.
14. While(L[i′, j′] 6= 0), repeat:{ /* Backtracking loop */
15. If (E[i′, j′] = ↑ ), seti′ = i′ − 1,
16. else if(E[i′, j′] =← ), setj′ = j′ − 1,
17. else seti′ = i′ − 1 andj′ = j′ − 1.
18. } /* End of while */
19. Report the approximate match locationi′ − j′.
20. } /* End of if */
21. } /* End of for i */

In this algorithm, the populating ofL andE takes a total ofΘ(nm) time. Each iteration in the backtracking
loop for each approximate match reducesi′ and/orj′. If only i′ is reduced, then the value ofL[i′, j′] also
reduces by1. Therefore, the total number of iterations of each backtracking loop ismax(m, l). We usually
havel 6 m − 1 (otherwise, every position inS is an approximate match position), so each backtracking loop
runs inO(m) time, and there are at mostn executions of the backtracking loop.

— Page 2 of 2 —


