Class test 2

Roll no:

\qquad Name:
[Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

1. Let $S=a_{0} a_{1} a_{2} \ldots a_{n-1}$ and $T=b_{0} b_{1} b_{2} \ldots b_{m-1}$ be two strings of lengths n and m, respectively. The Levenshtein distance (or edit distance) $L(S, T)$ between S and T is the minimum number of elementary edit operations needed to convert S to T. Three types of elementary edit operations are permitted: insertion of a character (like algorith $m \Rightarrow$ alogorithm), deletion of a character (alogorithm \Rightarrow logorithm), and replacing one character by another character (logorithm \Rightarrow logarithm).
For computing $L(S, T)$, build a two-dimensional table $L[i, j]$ for $-1 \leqslant i \leqslant n-1$ and $-1 \leqslant j \leqslant m-1$. The entry $L[i, j]$ stands for the Levenshtein distance between the prefixes $S[0 \ldots i]$ and $T[0 \ldots j]$. Write a $\Theta(n m)$-time algorithm to populate the entire table L in a suitable sequence. The entry $L[n-1, m-1]$ gives the desired distance $L(S, T)$. (Hint: Express $L[i, j]$ in terms of $L[i-1, j], L[i, j-1]$ and $L[i-1, j-1]$.)

Solution The boundary conditions are $L[i,-1]=i+1$ for all $i \geqslant-1$ (we need to make $i+1$ deletions in $S[0 \ldots i]$), and $L[-1, j]=j+1$ for all $j \geqslant-1(j+1$ insertions in $S[0 \ldots-1]=\epsilon)$. For $i, j \geqslant 0$, we have

$$
L[i, j]=\min \begin{cases}L[i-1, j]+1, & {\left[\text { Convert } a_{0} a_{1} \ldots a_{i-1} a_{i} \text { to } b_{0} b_{1} \ldots b_{j} a_{i}, \text { and delete } a_{i} .\right]} \\
L[i, j-1]+1, & {\left[\text { Convert } a_{0} a_{1} \ldots a_{i} \text { to } b_{0} b_{1} \ldots b_{j-1}, \text { and append } b_{j} .\right]} \\
& \begin{array}{l}
\text { If } a_{i}=b_{j}, \text { converting } a_{0} a_{1} \ldots a_{i-1} a_{i} \text { to } b_{0} b_{1} \ldots b_{j-1} b_{j} \text { is the same } \\
L[i-1, j-1]+t . \\
\text { as converting } a_{0} a_{1} \ldots a_{i-1} \text { to } b_{0} b_{1} \ldots b_{j-1}, \text { so } t=0 \text { in this case. } \\
\\
\\
\text { If } a_{i} \neq b_{j}, \text { then convert } a_{0} a_{1} \ldots a_{i-1} a_{i} \text { to } b_{0} b_{1} \ldots b_{j-1} a_{i}, \\
\\
\text { and replace } \left.a_{i} \text { by } b_{j}, \text { so } t=1 \text { in this case. }\right]
\end{array}\end{cases}
$$

To start with, we populate the topmost row and the leftmost column of L using the boundary conditions. Subsequently, we populate the rest of the table in the row-major (or column-major) fashion. This ensures that when $L[i, j]$ is computed, the values $L[i-1, j], L[i, j-1]$ and $L[i-1, j-1]$ are already available.
The pseudocode of an algorithm for computing $L(S, T)$ is given below.

```
Initialize \(L[i,-1]=i+1\) for \(i=-1,0,1,2, \ldots, n-1\).
Initialize \(L[-1, j]=j+1\) for \(j=0,1,2, \ldots, m-1\).
For \(i=0,1,2, \ldots, n-1\), repeat: \(\{\)
    For \(j=0,1,2, \ldots, m-1\), repeat: \(\{\)
            If \(\left(a_{i}=b_{j}\right)\), set \(t=0\), else set \(t=1\).
            Set \(L[i, j]=\min (L[i-1, j]+1, L[i, j-1]+1, L[i-1, j-1]+t)\).
    \}/* End of for \(j * /\)
\} /* End of for \(i\) */
Return \(L[n-1, m-1]\).
```

2. Let S and T be strings as in Exercise 1. We are given a bound l on the number of errors. We want to compute all positions i in S, for which $S[i \ldots i+k]$ (for some $k \geqslant 0$) is at a Levenshtein distance $\leqslant l$ from T. This problem is known as approximate string matching, and has applications in spell checking, DNA sequence matching in computational biology, and identifying a multimedia file from a (possibly corrupted) snapshot.

Explain how you can modify the algorithm of Exercise 1 in order to find all the approximate matches (that is, matches with $\leqslant l$ errors) of T in S. The modified algorithm should run in $\Theta(n m)$ time.

Solution The algorithm of Exercise 1 requires two modifications for solving the approximate string matching problem.

1. Change in boundary conditions: Since the approximate match of T can start from any location in S, the characters preceding any matching location do not count in the distance calculation, so we set the leftmost column as $L[i,-1]=0$ (instead of $i+1$) for all i. The other boundary condition (the topmost row) remains the same.
2. Remembering the edit sequences: For $i, j \geqslant 0$, we need to remember which of the three arguments gives the minimum value during the computation of $L[i, j]$. We need to track back to the beginning of the match using these markers.

The modified algorithm is given below.

```
For \(i=-1,0,1,2, \ldots, n-1\), set \(L[i,-1]=0\).
For \(j=0,1,2, \ldots, m-1\), set \(L[-1, j]=j+1\).
For \(i=0,1,2, \ldots, n-1\), repeat: \(\{\)
    For \(j=0,1,2, \ldots, m-1\), repeat: \(\{\)
        If \(\left(a_{i}=b_{j}\right)\), set \(t=0\), else set \(t=1\).
        Let \(u=L[i-1, j]+1, v=L[i, j-1]+1\) and \(w=L[i-1, j-1]+t\).
        Set \(L[i, j]=\min (u, v, w)\).
        If \((L[i, j]=u)\), set \(E[i, j]=\uparrow\),
        else if \((L[i, j]=v)\), set \(E[i, j]=\leftarrow\),
        else set \(E[i, j]=\nwarrow\).
    \} /* End of for \(j * /\)
    If \((L[i, m-1] \leqslant l)\{\)
        Initialize \(i^{\prime}=i\) and \(j^{\prime}=m-1\).
        While ( \(L\left[i^{\prime}, j^{\prime}\right] \neq 0\) ), repeat: \(\{/ *\) Backtracking loop */
                If \(\left(E\left[i^{\prime}, j^{\prime}\right]=\uparrow\right)\), set \(i^{\prime}=i^{\prime}-1\),
                else if \(\left(E\left[i^{\prime}, j^{\prime}\right]=\leftarrow\right)\), set \(j^{\prime}=j^{\prime}-1\),
                else set \(i^{\prime}=i^{\prime}-1\) and \(j^{\prime}=j^{\prime}-1\).
            \}/* End of while */
            Report the approximate match location \(i^{\prime}-j^{\prime}\).
    \}/* End of if*/
\}/* End of for \(i\) */
```

In this algorithm, the populating of L and E takes a total of $\Theta(n m)$ time. Each iteration in the backtracking loop for each approximate match reduces i^{\prime} and/or j^{\prime}. If only i^{\prime} is reduced, then the value of $L\left[i^{\prime}, j^{\prime}\right]$ also reduces by 1 . Therefore, the total number of iterations of each backtracking loop is $\max (m, l)$. We usually have $l \leqslant m-1$ (otherwise, every position in S is an approximate match position), so each backtracking loop runs in $\mathrm{O}(m)$ time, and there are at most n executions of the backtracking loop.

