
CS21003 Algorithms I, Autumn 2011–12

Class test 1

Maximum marks: 20 Date: 13-Sep-2011 Duration:1 hour

Roll no: Name:

[Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

1. Write a C function that, given an arrayA of sizen, decides whetherA is the contiguous representation of a
max-heap. (4)

int isMaxHeap (int A[], int n)
{

int i, p;

for (i=n-1; i>=1; --i) {

p = (i - 1) / 2;

if (A[p] < A[i]) return 0;

}

return 1;

}

2. You are given a rooted treeT represented by a binary treeB in the first-child-next-sibling representation.
Write a C function to determine the height of the original treeT (not of the binary treeB). (4)

int height (bintreenode *B)
{

int h = 0, t;

if (B == NULL) return -1;

B = B -> left;

while (B != NULL) {

t = height(B);

if (t > h) h = t;

B = B -> right;

}

return h;

}

— Page 1 of 2 —

3. You are given the adjacency matrixA of an undirected graphG with n vertices numbered0, 1, 2, . . . , n− 1.
Consider the following dynamic-programming algorithm to decide whetherG is connected or not.

(a) DefineA(l) to be then × n Boolean matrix such thatA(l)[i][j] = 1 if and only if there is a path of
length6 l from vertexi to vertexj. How can you computeA(1) from A? (2)

Solution CopyA to A(1), and setA(1)[i][i] = 1 for all i = 0, 1, 2, . . . , n − 1.

(b) You are givenA(l1) andA(l2). Describe how you can computeA(l1+l2). (2)

Solution A(l1+l2)[i][j] = 1 if and only if A(l1)[i][k] = 1 = A(l2)[k][j] for somek ∈ {0, 1, 2, . . . , n − 1}.

(c) What is the running time of your algorithm of Part (b)? (2)

Solution O(n3).

(d) ComputeA(1), A(2), A(3), . . . , A(n−1) (in that sequence). How can you useA(n−1) to decide whether
G is connected or not? (2)

Solution Check whetherA(n−1)[0][j] = 1 for all j = 0, 1, 2, . . . , n − 1. It is not necessary to look at the entire matrix.
Only one row/column will do.

(e) What is the running time of the algorithm of Part (d)? (2)

Solution O(n4).

(f) Design anO(n3 log n)-time algorithm based upon the computation ofA(n−1). SinceG cannot contain
paths of lengths> n, it follows thatA(e) = A(n−1) for all e > n − 1. (2)

Solution Using Part (b), computeA(2), A(4), A(8), A(16), . . . , A(2k), where2k−1 < n − 1 6 2k. Call e = 2k. Check
whetherA(e)[0][j] = 1 for all j = 0, 1, 2, . . . , n − 1.

Remark: A
(1) is called thereflexive closureof A, andA

(n−1) thereflexive-transitive closureof A. We will later study anO(n3)-
time dynamic-programming algorithm to computeA

(n−1). Connectedness ofG can, however, be decided in onlyO(n2) time.

— Page 2 of 2 —

