Class test 1
\qquad Name:
[Write your answers in the question paper itself. Be brief and precise. Answer all questions.]

1. Write a C function that, given an array A of size n, decides whether A is the contiguous representation of a max-heap.
```
int isMaxHeap ( int A[], int n )
{
```

```
    int i, p;
```

 int i, p;
 for (i=n-1; i>=1; --i) {
 for (i=n-1; i>=1; --i) {
 p = (i - 1) / 2;
 p = (i - 1) / 2;
 if (A[p] < A[i]) return 0;
 if (A[p] < A[i]) return 0;
 }
 }
 return 1;
    ```
    return 1;
```

\}
2. You are given a rooted tree T represented by a binary tree B in the first-child-next-sibling representation. Write a C function to determine the height of the original tree T (not of the binary tree B).

```
int height ( bintreenode *B )
{
    int h = 0, t;
    if (B == NULL) return -1;
    B = B -> left;
    while (B != NULL) {
        t = height(B);
        if (t > h) h = t;
        B = B -> right;
    }
    return h;
```

\}
3. You are given the adjacency matrix A of an undirected graph G with n vertices numbered $0,1,2, \ldots, n-1$. Consider the following dynamic-programming algorithm to decide whether G is connected or not.
(a) Define $A^{(l)}$ to be the $n \times n$ Boolean matrix such that $A^{(l)}[i][j]=1$ if and only if there is a path of length $\leqslant l$ from vertex i to vertex j. How can you compute $A^{(1)}$ from A ?

Solution Copy A to $A^{(1)}$, and set $A^{(1)}[i][i]=1$ for all $i=0,1,2, \ldots, n-1$.
(b) You are given $A^{\left(l_{1}\right)}$ and $A^{\left(l_{2}\right)}$. Describe how you can compute $A^{\left(l_{1}+l_{2}\right)}$.

Solution $A^{\left(l_{1}+l_{2}\right)}[i][j]=1$ if and only if $A^{\left(l_{1}\right)}[i][k]=1=A^{\left(l_{2}\right)}[k][j]$ for some $k \in\{0,1,2, \ldots, n-1\}$.
(c) What is the running time of your algorithm of Part (b)?

Solution $\mathrm{O}\left(n^{3}\right)$.
(d) Compute $A^{(1)}, A^{(2)}, A^{(3)}, \ldots, A^{(n-1)}$ (in that sequence). How can you use $A^{(n-1)}$ to decide whether G is connected or not?

Solution Check whether $A^{(n-1)}[0][j]=1$ for all $j=0,1,2, \ldots, n-1$. It is not necessary to look at the entire matrix. Only one row/column will do.
(e) What is the running time of the algorithm of Part (d)?

Solution $\mathrm{O}\left(n^{4}\right)$.
(f) Design an $\mathrm{O}\left(n^{3} \log n\right)$-time algorithm based upon the computation of $A^{(n-1)}$. Since G cannot contain paths of lengths $\geqslant n$, it follows that $A^{(e)}=A^{(n-1)}$ for all $e \geqslant n-1$.

Solution Using Part (b), compute $A^{(2)}, A^{(4)}, A^{(8)}, A^{(16)}, \ldots, A^{\left(2^{k}\right)}$, where $2^{k-1}<n-1 \leqslant 2^{k}$. Call $e=2^{k}$. Check whether $A^{(e)}[0][j]=1$ for all $j=0,1,2, \ldots, n-1$.

Remark: $A^{(1)}$ is called the reflexive closure of A, and $A^{(n-1)}$ the reflexive-transitive closure of A. We will later study an $\mathrm{O}\left(n^{3}\right)$ time dynamic-programming algorithm to compute $A^{(n-1)}$. Connectedness of G can, however, be decided in only $\mathrm{O}\left(n^{2}\right)$ time.

