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Abstract graphs

= Nodes, (binary) edges

= Edge weights, perhaps node weights

= Only one “kind” of node and edge

= Limited ability to represent real-world data

= Can already pose a number of difficult
problems
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Asymmetric influence

= How strongly does node u influence node v?
* Length of path/s from uto v
* Number of (edge disjoint) paths from uto v
 Distractions on the way

e \_e /i{‘
= Random walks and electrical networks

 Hitting time
» Effective conductance
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Symmetric similarity
= How similar are nodes u and v?
= How similar are their neighborhoods?
= Let N(u) be (in/out/both) neighbors of u
= Base case: s(u,u) =1
= PageRank on squared graph

) = W@IND |y 2y

pCN(u),qEN (v)
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Missing link: Low-rank factors

= Should there be an edge between u and v?

= Not necessarily (Just) because they are
(directly) similar

= Adjacency matrix A is noise added to a low
rank matrix UV

= Edge weights +1, -1, O (don’t know)
mlnz |A; ;| max{0,1 — A;;(UV);; }

]
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Real-world complications

= Nodes
« Have types: person, organization, emalil
« Are associated with feature vectors: dob, pan
= Edges
« Have types: worksFor, wrote
« Are associated with feature vectors: emailDate

= Hyperedges (for general relational data
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Node labeling/scoring/ranking

= The problem in graphical models
= |n general, hard; easier special cases

= Smoother models for associative potentials
Edge {1,J} has association strength A;

= Node | associated with feature vector x;

= Local score s= wi, final score f.

min (w Ly — f@)z‘l‘c Z Azg f])2

v {i.j}EE

= Laplacian smoothing
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“Inverse” PageRank

= Original PageRank: edge conductances
fixed, find influence (effective conductance)
of (from) one node on (to) all others

And rank them by decreasing influence

= |nverse PageRank
Given graph skeleton but not edge conductances

Given sampled partial comparison between pairs
of nodes wrt influence

Infer edge conductances
So as to generalize influence to other nodes
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Preferred community scenario
= Ranking papers for Data Mining
researcher

= Some subgraphs and citations more
Important than others

“Favored node”

= Revealed via pairwise preferences

= Do not estimate C(j,I) directly o

= Directly estimate p;, a constrained L 9
“flow” from i to | e V

Inflow @

INtO |
Z(k,i)DE Pi

= Local “transductive” setting
= Lots of parameters

= “BTW” C(],I) — Pj
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Entity-relationship graph scenario

= Many node and edge types
= Edge e has type t(e)l){1,... T}

= Weight w(l,)) = B(t(1.)))
= Find (1), B(2), ..., B(T) for least
violation

= “Global entanglement”
but far fewer parameters

= Somewhat “inductive”,
can augment graph with ~ wrot
objects of known types

4 Company
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PageRank: Conventional view

" Inputs
Graph with edge conductance matrix C
Personalized teleport distribution r
Walk with probability a, teleport w.p. 1—-a
“Blased random surfer”

p=aCp+ (1 —a)r

= Qutput aC (i)

Steady state visit distribution

“You should emulate the {7,
aggregate behavior of
many random surfers” e [
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User view: Exact opposite!

- Rﬁm search-guided surfer

= Search engine knows relevant subgraph
= But user can inspect only a few hits

= Search engine outputs sparse teleport r

." stuart russell - Google Search
€« C | O www.google.co.in/#hl=erBsource=hpRa=stua g | K
-
Stuart Russell's sounds on SoundCloud -

Create, record and share ...

soundcloud comistuart-russell - Cached

Stuart Russell on June 25 2011 0938 23 Plays?
Comments ... Stuart Russell on June 13, 2011 21:20. 39
Plays1 Comment1 Favoriting ...

Stuart Russell at Judea Pearl Symposium -
YouTube @

wivner yoUtube comfwatch?y=TTC3DclAUro
23 min- 27 Aug 2010 - Uploaded by LUICLA
= Stuart Russell at Judea Pearl Symposium
... This wideo records the lecture by
Professor Sturart Russell who spoke about
"The Glorious ...

MWore videos for stuart russell »

James Stuart Russell: The Parousia - A Careful
Look at the New ...

ey preteristarchive com/Booksfrussell html - Cached
Full text of James Stuart Russell's book, which expounds
an almost total preterism,
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User view: Exact opposite!

= User diffuses out through sparse teleport
= Occasionally teleports back to search results
= Eventually explores green subgraph

* (Red, green “boundaries” are probabilistic)
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Comments ... Stuart Russell on June 13, 2011 21:20. 39
Plays1 Comment1 Favoriting ...

Stuart Russell at Judea Pearl Symposium -
YouTube @

wivner yoUtube comfwatch?y=TTC3DclAUro
23 min- 27 Aug 2010 - Uploaded by LUICLA
= Stuart Russell at Judea Pearl Symposium
... This wideo records the lecture by
Professor Sturart Russell who spoke about
"The Glorious ...

MWore videos for stuart russell »

James Stuart Russell: The Parousia - A Careful
Look at the New ...

ey preteristarchive com/Booksfrussell html - Cached
Full text of James Stuart Russell's book, which expounds
an almost total preterism,
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Diffusion defined via subsumption

= Original PageRank: diffusion via hyperlinks

= But frequently used with other kinds of edges
= Suppose surfer Is on page |

= And, having read I, there i1s no new Info In |

= Then let C(j|1), also written as C(i-=>]) be large

| P POE e A
P )
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Graph center diversity (GCD)

= Suppose the searcher can click through at most
three links returned by the search engine

= |f any of the pages could be potentially relevant, ...
= ... then we cannot waste teleports on one cluster
A natural definition of diversity

PR Ci T
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Formulation summary

= Search engine knows what'’s best for query
Node I has relevance b(i)

= User has limited patience scanning results
r must be sparse: at most K positive elements

= Conductance matrix C and walk probability o
predict user behavior once givenr

= Steady state visit probabilities given by
(1—a)I—-aC) lr
= Inference, hard: design sparse r to minimize
HE— (1—a)(I—aC) lr
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Infection origin problem

= Observe node “infection” for a while

= But starting some time after the infection was
first introduced

= Trace back (probabillistically) to the origin
node(s)

= Obviously, impossible to reduce entropy on a
complete graph

= What graphs are amenable to such
forensics?

* Do the infected ever get immune/cured?
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Marketing problem
= EvilCorp wants all kids to eat sugary candies
Or their dads to buy iIPhones
= Obtain social network with edge strengths
= Have finite marketing budget

= Celebrities expensive to convert, but they
Influence a lot of people

= Allocate finite budget most judiciously
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Concluding remarks

= Graph have always been a (too?) powerful
data model

= Many formulations and approaches for
mining “abstract” graphs

= Real-world data turns into graphs with
additional info (node, edge features, time)

= More work to do on learning and ranking
problems on real-world graphs
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